
© APC

Object Detection

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 2

Whale recognition
NOAA Right Whale Recognition
• (https://www.kaggle.com/c/noaa-right-

whale-recognition)
• Contestants were asked to identify the

specific whale present in aerial images of
the ocean.

• We are going to train a convolutional
neural network (CNN) to localize the whale
within the image.

• Many successful competitors in the
original competition found it improved
their scores to first detect and localize the
whales in the image before trying to
identify them using a cropped and
normalized image.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
https://www.kaggle.com/c/noaa-right-whale-recognition

APC | 3

Whale recognition

Object detection approaches:
• Sliding window

✓ The simplest approach is to first train a
CNN classifier on image patches that can
differentiate the object from non-object
examples.

✓ We can inspect each patch in a larger
image, and make a determination
whether there is a whale present.

• Candidate generation and
classification

• Fully-convolutional network (FCN)
• DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 4

Sliding window

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 5

Sliding window

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 6

Sliding window

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 7

Sliding
window

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 8

Sliding window
import numpy as np

import matplotlib.pyplot as plt

import caffe

import time

MODEL_JOB_NUM = '20160920-092148-8c17' ## Remember to set this to be the job number for your model

DATASET_JOB_NUM = '20160920-090913-a43d' ## Remember to set this to be the job number for your dataset

MODEL_FILE = '/home/ubuntu/digits/digits/jobs/' + MODEL_JOB_NUM + '/deploy.prototxt'

PRETRAINED = '/home/ubuntu/digits/digits/jobs/' + MODEL_JOB_NUM + '/snapshot_iter_270.caffemodel‘

MEAN_IMAGE = '/home/ubuntu/digits/digits/jobs/' + DATASET_JOB_NUM + '/mean.jpg'

load the mean image

mean_image = caffe.io.load_image(MEAN_IMAGE)

Choose a random image to test against

RANDOM_IMAGE = str(np.random.randint(10))

IMAGE_FILE = 'data/samples/w_' + RANDOM_IMAGE + '.jpg'

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 9

Sliding window
Tell Caffe to use the GPU
caffe.set_mode_gpu()
Initialize the Caffe model using the model trained in DIGITS
net = caffe.Classifier(MODEL_FILE, PRETRAINED,

channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))

Load the input image into a numpy array and display it
input_image = caffe.io.load_image(IMAGE_FILE)
plt.imshow(input_image)
plt.show()

Calculate how many 256x256 grid squares are in the image
rows = input_image.shape[0]/256
cols = input_image.shape[1]/256

Initialize an empty array for the detections
detections = np.zeros((rows,cols))

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 10

Sliding window
Iterate over each grid square using the model to make a class prediction

start = time.time()

for i in range(0,rows):

for j in range(0,cols):

grid_square = input_image[i*256:(i+1)*256,j*256:(j+1)*256]

subtract the mean image

grid_square -= mean_image

make prediction

prediction = net.predict([grid_square])

detections[i,j] = prediction[0].argmax()

end = time.time()

Display the predicted class for each grid square

plt.imshow(detections)

Display total time to perform inference

print 'Total inference time: ' + str(end-start) + ' seconds'

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 11

Sliding window

Advantages:
• We can train a detector using only patch based training data

(which is more widely available).

Disadvantages:
• Slow to make predictions, especially if there is large overlap

between grid squares which leads to a great deal of redundant
computation

• challenging to produce a balanced training dataset that is robust
to false alarm causing clutter

• difficult to achieve scale invariance for object detection

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 12

Candidates generation

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 13

Candidates generation

Use some computationally cheaper, sensitive, but false alarm prone
algorithm to generate candidate detections.
• Cascade classifiers
• Selective search.

Advantages:
• The speedup due to a smaller number of candidate detections to test
• Depending on the candidate generation algorithm we may get more accurate

localization of the object

Disadvantages
• A more complex multi-stage processing pipeline
• An additional model to build or train for candidate generation
• A non-trivial false alarm rate
• Variable inference time dependent on the number of candidates generated

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 14

FCN

The commonly used fully-connected layers can be replaced with
convolutional layers.
• Convolutional filters are the same size as the feature map outputs for the

previous layer
• Number of filters is equal to the number of neurons in the fully-connected

layer it replaces.
• Images of varying size can be input in to the network for classification.

✓ If the input image is smaller than the expected image size for the network (called
the receptive field of the network) then we will still just obtain a single classification
for the image.

✓ However, if the image is larger than the receptive field then we will obtain a
heatmap of classifications, much like we obtained from the sliding window
approach.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 15

FCN

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 16

FCN

Fc6 receives its input from pool5.

• The shape of the activations at pool5 is 256*6*6.

• The shape of the activations at fc6 is 4096
✓ fc6 has 4096 output neurons.

✓To turn fc6 into an equivalent convolutional layer, create a
convolutional layer with 6*6 kernel size and 4096 output feature
maps.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 17

FCN
import numpy as np

import matplotlib.pyplot as plt

import caffe

import copy

from scipy.misc import imresize

import time

JOB_NUM = '20160920-110807-298d' ## Remember to set this to be the job number for your model

MODEL_FILE = '/home/ubuntu/digits/digits/jobs/' + JOB_NUM + '/deploy.prototxt'

PRETRAINED = '/home/ubuntu/digits/digits/jobs/' + JOB_NUM + '/snapshot_iter_270.caffemodel‘

Choose a random image to test against

RANDOM_IMAGE = str(np.random.randint(10))

IMAGE_FILE = 'data/samples/w_' + RANDOM_IMAGE + '.jpg'

Tell Caffe to use the GPU

caffe.set_mode_gpu()

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 18

FCN
Load the input image into a numpy array and display it
input_image = caffe.io.load_image(IMAGE_FILE)
plt.imshow(input_image)
plt.show()

Initialize the Caffe model using the model trained in DIGITS
This time the model input size is reshaped based on the randomly selected input image
net = caffe.Net(MODEL_FILE,PRETRAINED,caffe.TEST)
net.blobs['data'].reshape(1, 3, input_image.shape[0], input_image.shape[1])
net.reshape()
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_raw_scale('data', 255.0)

This is just a colormap for displaying the results
my_cmap = copy.copy(plt.cm.get_cmap('jet')) # get a copy of the jet color map
my_cmap.set_bad(alpha=0) # set how the colormap handles 'bad' values

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 19

FCN
Feed the whole input image into the model for classification
start = time.time()
out = net.forward(data=np.asarray([transformer.preprocess('data', input_image)]))
end = time.time()

Create an overlay visualization of the classification result
im = transformer.deprocess('data', net.blobs['data'].data[0])
classifications = out['softmax'][0]
classifications =
imresize(classifications.argmax(axis=0),input_image.shape,interp='bilinear').astype('flo
at')
classifications[classifications==0] = np.nan
plt.imshow(im)
plt.imshow(classifications,alpha=.5,cmap=my_cmap)
plt.show()

Display total time to perform inference
print 'Total inference time: ' + str(end-start) + ' seconds'

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 20

FCN

In many cases the FCN is able to locate the whale's face with greater precision
than the sliding window approach.
• It will still find a larger amount of the whale.

• It is sometimes confused by breaking waves or sunlight reflecting from the ocean surface.
✓ Caused by background clutter and the whale's body could be mitigated using appropriate data

augmentation.

Inference time for the FCN is about 1.5 seconds
• For the sliding window approach it took 10 seconds.

Ways to improve the classification accuracy and localization precision:
• Pass the input image through the network multiple times at varying scales.

✓ This improves the models tolerance to scale variation in the appearance of the object of interest.

• Modify the network layer strides to provide finer or coarser grained classification heatmap
outputs.
✓ Multiple versions of the input image can improve the final classification and detection result

drastically.

✓ A well known example of this approach was presented in the paper OverFeat.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 21

OverFeat

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 22

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 23

DetectNet

Advantages:
• Simple one-shot detection, classification and bounding box regression

pipeline.
• Very low latency.
• Very low false alarm rates due to strong, voluminous background

training data.

Disadvantages:
• In order to train this type of network specialized training data is

required where all objects of interest are labelled with accurate
bounding boxes.

• This type of training data is much rarer and costly to produce.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 24

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 25

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 26

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 27

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 28

DetectNet

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 29

DetectNet

DetectNet is able to accurately detect most whale
faces

• Tightly drawn bounding box

• Very low false alarm rate.

• Inference is extremely fast with DetectNet. Average time
taken to pass a single 336x224 pixel image forward
through DetectNet is just 22ms.

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/

APC | 30

KITTI

A huge dataset for cars
detection on images

• Creative Commons
Attribution-
NonCommercial-
ShareAlike 3.0

http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://www.parallel-computing.pro/
http://creativecommons.org/licenses/by-nc-sa/3.0/

