Вспоминаем теорию чисел

Сергей Николенко

Computer Science Club, 2015

Outline

- 1 Вспоминаем теорию чисел
 - Арифметика
 - Степени и корни
 - Дискретный логарифм

- ullet \mathbb{Z}_n^+ это группа по сложению.
- ullet \mathbb{Z}_n^* это группа по умножению.
- Сколько элементов в \mathbb{Z}_n^* ?

- \mathbb{Z}_{n}^{+} это группа по сложению.
- \mathbb{Z}_{n}^{*} это группа по умножению.
- Сколько элементов в \mathbb{Z}_{n}^{*} ?
- Обратимые элементы в \mathbb{Z}_n это взаимно простые с n.
- Их всего $\phi(n)$ функция Эйлера. Если p и q простые, то

$$\phi(p) = p - 1, \qquad \phi(pq) = (p - 1)(q - 1).$$

- \mathbb{Z}_{n}^{+} это группа по сложению.
- \mathbb{Z}_{n}^{*} это группа по умножению.
- Сколько элементов в \mathbb{Z}_{n}^{*} ?
- Если p простое, то \mathbb{Z}_p это поле: у каждого элемента, кроме нуля, есть обратный по умножению.
- Над полем верны полезные факты из алгебры: например, над полем многочлен степени d имеет не более d корней.

- На всякий случай ещё вспомним, что бывают конечные поля с p^m элементами.
- Их можно рассматривать как поля многочленов по модулю того или иного неприводимого многочлена.
- ullet Например, поле \mathbb{F}_{16} состоит из следующих элементов:

• Операции производятся по модулю x^4+x+1 (или x^4+x^3+1 , или $x^4+x^3+x^2+1$ — получится одно и то же поле).

Малая теорема Ферма

- Если p простое, то для любого $a \ a^p \equiv a \pmod{p}$, a для любого *a*, взаимно простого с *p*, $a^{p-1} \equiv 1 \pmod{p}$.
- Соответственно, для простого *p* и любых *m* и *n*

если
$$m \equiv n \pmod{p-1}$$
, то $\forall a \ a^m \equiv a^n \pmod{p}$.

 Теорема Эйлера — для любого п и любого а, взаимно простого с n,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

Алгоритм Евклида

- Алгоритм Евклида: классический вычисляет gcd.
- Кроме $d = \gcd(a, b)$, вычисляет ещё два числа x и y, такие, что ax + by = d.
- Как применить алгоритм Евклида, чтобы найти a^{-1} (mod n)?

Алгоритм Евклида

- Алгоритм Евклида: классический вычисляет gcd.
- Кроме $d = \gcd(a, b)$, вычисляет ещё два числа x и y, такие, что ax + by = d.
- Как применить алгоритм Евклида, чтобы найти a^{-1} (mod n)?
- Найти такие x и y, что ax + ny = d, где $d = \gcd(a, n)$.
- ullet Если d>1, то a необратимо в \mathbb{Z}_p ; если d=1, то $x=a^{-1}$ (mod n).

Возведение в степень

• Если есть два числа a и b по модулю n, и мы хотим вычислить $a^b \pmod{n}$, то можно вычислить

$$a^2 \pmod{n}$$
, $a^3 \pmod{n}$, ...

- ullet Здесь b-1 умножение по модулю n.
- Можно ли лучше?

Repeated squarings

• Можно сделать так: запишем b как строку битов. Потом будем возводить a в квадрат, домножая на a там, где у b биты равны 1. Например:

$$b = 9_{10} = 1001_2$$
 \Rightarrow $a^b = ((a^2)^2)^2 \cdot a$, 4 умножения.

$$b=65537_{10}=100000000000001_2$$
 \Rightarrow $a^b=(((a^2)^2)\ldots)^2\cdot a,\ 17$ умножений.

• 17 значительно меньше, чем 65536.

Квадратные корни

- Теперь давайте наоборот. Как по $x^2 \pmod p$ найти $x \pmod p$?
- Во-первых, не всякое число является квадратом по модулю р. Те, которые являются, называются квадратичными вычетами.
- ullet В \mathbb{Z}_p^* вычетов столько же, сколько невычетов, а именно $rac{p-1}{2}$. Почему?

Квадратные корни

- Рассмотрим $1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2$.
- ullet Поскольку $n^2 \equiv (p-n)^2 \pmod{n}$, всего вычетов не больше $rac{p-1}{2}$.
- ullet Пусть их меньше. Тогда для некоторых $1 \leq i,j \leq rac{p-1}{2}$

$$i^2 \equiv (-i)^2 \equiv j^2 \equiv (-j)^2 \pmod{p}$$
.

- Иначе говоря, у уравнения $x^2 \equiv i^2 \pmod{p}$ четыре разных корня.
- ullet Но \mathbb{Z}_p поле, и у него не может быть больше двух корней.

Символ Лежандра

Символ Лежандра:

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & a \equiv 0 \pmod{p}, \\ 1, & a \not\equiv 0 \pmod{p}, \text{ и для некоторого } x \ x^2 \equiv 0, \\ -1, & a \not\equiv 0 \pmod{p}, \text{ и такого } x \text{ не существует.} \end{cases}$$

Для простого р

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Символ Лежандра

• Кроме того,

$$\begin{pmatrix} \frac{ab}{p} \end{pmatrix} = \begin{pmatrix} \frac{a}{p} \end{pmatrix} \begin{pmatrix} \frac{b}{p} \end{pmatrix},$$

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix} = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \begin{pmatrix} \frac{q}{p} \end{pmatrix}.$$

- Это позволяет построить алгоритм для вычисления символа Лежандра $\left(\frac{a}{p}\right)$:
 - разложить $\left(\frac{a}{p}\right)$ в произведение $\left(\frac{p_1}{p}\right)\ldots\left(\frac{p_m}{p}\right)$;
 - заменить на $p_i \pmod{p}$, перевернуть, повторить.

Квадратный корень

- ullet Теперь возвращаемся к квадратному корню. Пусть дано простое p и $a\in\mathbb{Z}_p$.
- Если $p \equiv 3 \pmod{4}$, то корень ищется как

$$x \equiv a^{(p+1)/4} \pmod{n}.$$

• Действительно,

$$1 = \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Значит,

$$x^2 \equiv a^{(p+1)/2} \equiv a \cdot a^{(p-1)/2} \equiv a \pmod{p}.$$

Квадратный корень

- ullet Для $p\equiv 1\pmod 4$ вероятностный алгоритм.
- Рассмотрим многочлен $x^{(p-1)/2}-1$. Он степени $\frac{p-1}{2}$, его корни все квадратичные вычеты по модулю p, и только они.
- Теперь рассмотрим многочлен $f(x) \equiv x^2 a \equiv (x r)(x + r) \pmod{p}$. Подставим $f(x \delta) \equiv (x (\delta r))(x (\delta + r)) \pmod{p}$.
- Факт (без доказательства): для половины δ одно из значений $(\delta-r), \ (\delta+r)$ является вычетом, а другое нет.
- Выберем δ случайно и подсчитаем $\gcd(f(x-\delta), x^{(p-1)/2}-1)$ (как многочленов).
- Тогда с вероятностью 1/2 мы получим корень из a.

Для составных n

- Пусть, например, n = pq. Алгоритм вычисления квадратного корня из a по модулю n.
 - lacktriangle Найти корни (r,-r) числа a по модулю p.
 - $oldsymbol{a}$ Найти корни (s,-s) числа a по модулю q.
 - $oldsymbol{0}$ Найти алгоритмом Евклида такие c и d, что cp+dq=1.
 - lacktriangle Вычислить $x = rdq + scp \pmod{n}$ и $y = rdq scp \pmod{n}$.
 - \bigcirc Вернуть $(\pm x, \pm y)$.
- Иначе говоря, мы можем вычислять квадратные корни, если умеем раскладывать n на множители.

Обсуждение алгоритма

- Вычисление квадратного корня потребовало уметь раскладывать а на множители.
- Без этого даже не проверить, является ли а вычетом.
- А можно ли наоборот? Можно ли разложить число на множители, умея вычислять квадратные корни по его модулю?

Разложение на множители через \sqrt{a}

- Можно! Предположим, что мы умеем выдавать некий квадратный корень по модулю n.
- Возьмём случайное x, вычислим $a=x^2$ и подадим алгоритму.
- Если мы получили $\pm x$, повторим операцию. А если получили $y \neq \pm x$, то получилось, что

$$x^2 \equiv y^2 \pmod{n}$$
, Ho $y \neq \pm x \pmod{n}$.

- Это значит, что n делит $x^2 y^2 = (x y)(x + y)$, но при этом не делит либо x y, либо x + y.
- Значит, gcd(x-y,n) нетривиальный делитель n.

Постановка задачи

- Теперь поставим более сложную задачу найти логарифм.
- Дискретный логарифм: по простому числу p, числу $a \in \mathbb{Z}_p^*$, порождающему \mathbb{Z}_p^* , и числу $b \in \mathbb{Z}_p^*$ найти такое $0 \le x \le p-2$, что

$$a^{x} \equiv b \pmod{p}$$
.

• Обобщённый дискретный логарифм: то же в произвольной циклической группе G: по генератору $a \in G$ и $b \in G$ найти такой x, что $a^x = b$.

Замечания

• Сложность не зависит от генератора a; для другого генератора a^\prime

$$a^{x} = b = a^{\prime y} = (a^{z})^{y}, \text{ } \text{u} \log_{a^{\prime}} b = \log_{a} b(\log_{a} a^{\prime})^{-1}.$$

 Но сложность зависит от представления группы, т.е. для изоморфных групп сложность дискретного логарифма может быть разной. Почему?

Замечания

• Сложность не зависит от генератора a; для другого генератора a^\prime

$$a^{x} = b = a^{\prime y} = (a^{z})^{y}, \text{ } \text{u} \log_{a^{\prime}} b = \log_{a} b(\log_{a} a^{\prime})^{-1}.$$

- Но сложность зависит от представления группы, т.е. для изоморфных групп сложность дискретного логарифма может быть разной. Почему?
- Потому что любая циклическая группа изоморфна \mathbb{Z}_n^+ для некоторого n.
- Дискретный логарифм в \mathbb{Z}_n^+ это значит найти такой x, что $ax = b \pmod{n}$. Наверное, это не так уж сложно...

Замечания

- Алгоритмы для задачи дискретного логарифма делятся на три группы:
 - Работающие для любых групп.
 - Работающие для любых групп, но эффективные для «гладких» (когда порядок группы имеет маленькие простые делители).
 - Эффективные только для некоторых групп.
- Мы будем их изучать в этом курсе, но позже.

Итоги присказки

- ullet Мы теперь умеем в \mathbb{Z}_n :
 - быстро возводить в степень;
 - находить a^{-1} ;
 - использовать алгоритм Евклида;
 - ullet применять равенство $a^{\Phi(n)} \equiv 1 \pmod{n}$.
- Мы выяснили, что умеем раскладывать n на множители тогда и только тогда, когда умеем вычислять по модулю n квадратные корни.
- И узнали о задаче дискретного логарифма.

Thank you!

Спасибо за внимание!