Fault-tolerant broadcasts
Part II: Algorithms

T Y

Fault-tolerant broadcasts

— Non-uniform reliable broadcast

Agreement: if a correct process delivers m,
then all correct processes eventually deliver m.

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
send(m) to all

© Fernando Pedone

Fault-tolerant broadcasts

m Reliable broadcast
— System model
*[1={Ps P2 -, Pn}
+ Asynchronous system (i.e., no timing assumptions)
* Crash-stop failure model (at most f failures)
* Quasi-reliable channels

— If p sends a message m to g and both processes are
correct, then q eventually receives m

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

— Non-uniform reliable broadcast (cont'd)

W El AT
A

© Fernando Pedone

Fault-tolerant broadcasts

— Uniform reliable broadcast

Uniform agreement: if a process delivers m,

then all correct processes eventually deliver m.

broadcast(UR, m) works as follows:
send(m) to all

upon receive(m)

deliver(UR, m)
if [didn’t send m yet] then send(m) to all

if [for f+1 processes q: received(m) from q] then

© Fernando Pedone

Fault-tolerant broadcasts

— Cost of reliable broadcast algorithms

Number of Latenc
Messages y
Reliable
Broadcast n2 0
(optimized)
Uniform
Reliable n2 20
Broadcast

N DR D el D DR e

© Fernando Pedone

Fault-tolerant broadcasts

— Uniform reliable broadcast (cont’d) — f =

1

P

Z_.\, s . P--j \’2
P—-/\‘j Z .

© Fernando Pedone

?

N DR D el D DR e

Fault-tolerant broadcasts

— Reducing the number of messages

« Asynchronous system + &S

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
start Task Propagate(m, sender(m))

Task Propagate(m, q)
if suspect q then send(m) to all

© Fernando Pedone

Fault-tolerant broadcasts

m FIFO reliable broadcast

— Transforms Reliable Broadcast into
FIFO Uniform Reliable Broadcast

— Assumptions

* If m is the i-th message broadcast by p, then m is
tagged with sender(m) = p and seg#(m) =i

» Each process keeps a local vector of counters
next[1..n]

© Fernando Pedone

N DR D el D DR e

Fault-tolerant broadcasts

m Causal reliable broadcast
— Transforms Uniform Reliable Broadcast into
Causal Reliable Broadcast
— Notation
+ Message sequences: (m;, m,, ...)
* 1 is the empty sequence
* @ is the concatenation operator

© Fernando Pedone

Fault-tolerant broadcasts

Initialization
msgSet < @
next[q] < 1, for each process q

To execute broadcast(F, m):
broadcast(R, m)

deliver(F,—) occurs as follows:
upon deliver(R, m) do
q < sender(m)
msgSet < msgSet U {m }
while (3m’ € msgSet: sender(m’) = g and next[q] = seg#(m’))
deliver(F, m’)
next[q] <= next[q] + 1

© Fernando Pedone

N DR D el D DR e

Fault-tolerant broadcasts

Initialization
rentDIvrs < L

To execute broadcast(C, m):
broadcast(F, rcntDIvrs @ (m))
rentDlvrs < L

deliver(C,-) occurs as follows:
upon deliver(F, (m;, m,, ..., m;)) do
forifrom 1toldo
if p has not previously executed deliver(C, m;) then
deliver(C, m,)
rentDIvrs < rentDivrs @ (m;)

© Fernando Pedone

Fault-tolerant broadcasts

Reliable Total order Atomic
Broadcast Broadcast
FIFO Total order FIFO Atomic
Broadcast Broadcast
Causal Total order Causal Atomic
Broadcast Broadcast

© Fernando Pedone

e e) EE e

Fault-tolerant broadcasts

— From consensus to atomic broadcast

Initialization
R-delivered < @
A-delivered < @
k<0
To execute broadcast(A, m):
broadcast(R, m)
deliver(A,—) occurs as follows:
upon deliver(R, m) do
R-delivered < R-delivered U { m}
upon R-delivered \ A-delivered # @
k—k+1
A-undelivered < R-delivered \ A-delivered
propose(k, A-undelivered)
wait until decide(k, msgSet)
A-delivert < msgSet« \ A-delivered
deliver all messages in A-deliver* in some deterministic order
A-delivered < A-delivered U A-deliver®

© Fernando Pedone

Fault-tolerant broadcasts

m Atomic broadcast
— From atomic broadcast to consensus

deliver(v,)
A broadcast(v,) deliver(v,) propose(v,) decide(v,)
S — 00> , = >
© >
g broadcast(v,) é propoﬁse(vz)
a » { t >
o c
= 3 propose(vs)
g R———mmmMmmOo0—®e— R = >

To execute propose(v):
broadcast(v)

Let v be the first value delivered
decide(v)

© Fernando Pedone

Fault-tolerant broadcasts

— From consensus to atomic broadcast (cont’d)

deliver(A,m,)

broadcast(A,m,) Kdeliver(A m,)
broadcast(R,m,) ~ ™, propose(ms;m,) N e
@-O il t @0—

broadcast(A,m,)
broadcast(R,m,) propose(m,,m,,m;)

Q{ ————0ee m—eo—@—

broadcast(A,m,)
broadcast(R,m;) propose(m,,m,)

© Fernando Pedone

e e) EE e

Fault-tolerant broadcasts

— From consensus to atomic broadcast (cont’d)

VAN
RN
R : coordinator ._>

Consensus

Reliable broadcast

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

— Two non-conflicting messages

How many ACK’s are
m, needed for dellvery”
Pom Y

s ACK(m,)
m,
Q — |

N\
\ ACK(m4,mj,)
ACK(

R A |

(

© Fernando Pedone

m,) | .

Fault-tolerant broadcasts

m Generic broadcast

— Single-message case
m

P —l- n ; o—
\‘ ﬁ ACK%
Q i —@
\ Only message X
Received so far
R — ®
Flia

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

— The general case (m, and m, conflict)

kv.

ACK m1)\jACK (m,)

my
P,

¥

=28

order violated

O
O~
@~

D%,

Nack < n/2 = order violated

§<E‘

ACK(m,)

© Fernando Pedone

Fault-tolerant broadcasts

— The general case (m, and m, conflict)
1
P, QQ/ o
N
ACK(m1) Consensus is needed
A
P3

ACK(m,)__*

- 7

m,
Pt G -

Consensus

© Fernando Pedone

DD R e BE R e

Fault-tolerant broadcasts

— The general case (m, and m, conflict)

M4 ack(m,)

Consensus

Exchangeall ~1¥ oo
ACKed messages
© Fernando Pedone

Fault-tolerant broadcasts

— The general case (m, and m, conflict)

* Conflicts should be detected:

* For conflicting messages:
“If my and m, conflict, and m, (or m,) has been
delivered before consensus, then consensus cannot
contradict this order.”

How to ensure this???

© Fernando Pedone

DD R e BE R e

Fault-tolerant broadcasts

— The general case (m, and m, conflict)

Which messages
should be chosen?

© Fernando Pedone

Fault-tolerant broadcasts

—If npck = [(n+1) / 2] (i.e., majority), how much
should n¢pk be?

— How to choose a message in the “check
phase”?

— Problem: we can’t tolerate failures

—What can be done?

— Increase npc... for example, if nycx = 4 and
n =5, could we have ngy = 47

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

— What is the relation between nycx and ngpk?

Nop/2 + (N-Ncpy) < Nack

P, — AcK 1 3 >
n n-n

P2 { ACK CHK >

Ps J [g

-
.
g J‘ ...f ,

© Fernando Pedone

Fault-tolerant broadcasts

- PNack
o™ P Could m, be delivered
. m, o m, ‘ in the “ack phase™?
4 m, ° m, ‘
o™ Can we be sure that m, was
m, delivered in the “ack phase™?
Nehk

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

— The general case (cont'd)
Nek/2 + (N-Nepk) < Nack
Nek + 2N -2Nepk < 2Nack
Ny + 2N < 2Npcy
‘ 2npck + Nepk > 2N ‘

Best case: Nk = Nopk = X
2x +x>2n
X > 2n/ 3 (Optimal for ACK with 25)

© Fernando Pedone

Fault-tolerant broadcasts

— Optimality (i.e., lower bound)

m\
P
ACK(m)
Q
R
S

© Fernando Pedone

Fault-tolerant broadcasts

Handling conflicts:
when (R-delivered \ (G-delivered U pendingk) # @)
else

send (k, pendingk, CHK) to all
wait until [for ny p; : received (k, pending®, CHK) from p;]

propose(k, msgSet, (R-delivered \ (G-delivered U pendingk)))
wait until decide (k, NCset, Cset)

for each m € NCset \ (G-delivered U g-Deliverk) do deliver(m)
G-delivered <— G-delivered U NCset U Cset

k<—k+1
pendingk < g-Deliverk < @&

if [for all m, m’ € (R-delivered \ G-delivered): m doesn’t conflict with m’] then

msgSet = {m | for [(nCHK+1)/2] p; : received (k, { ..., m, ... }, CHK) from p;

in ID order: for each m Cset \ (G-delivered U g-Deliverk) do deliver(m)

© Fernando Pedone

NI BN el DD EOE R e

Fault-tolerant broadcasts

Initialization
R-delivered < G-delivered < @
pending' < g-Deliver! < @
k<1

To execute broadcast(m):
broadcast(R, m)

when deliver(R, m) do
R-delivered <— R-delivered U { m }

when (R-delivered \ (G-delivered U pendingk) # @)
if [for all m, m’ € (R-delivered \ G-delivered): m doesn’t conflict with m’] then
pendingk < R-delivered \ G-delivered
send (k, pendingk, ACK) to all
else
Handle conflict (next slide)

when receive (k, pendingk, ACK) from p;
while 3m such that [for nyc p;: received (k, pending¥, ACK) from p; and
m € (pendingk \ g-Deliverk)] do
g-Deliverk < g-Deliverk U {m}
deliver(m)

© Fernando Pedone

NI BN el DD EOE R e

Paxos

m The part-time parliament
— Leslie Lamport
— Consensus algorithm
— SRC Research Report 49, Sep. 1, 1989

—ACM TOCS, May 1998
* Submitted in 1990

© Fernando Pedone

Paxos

m The protocol
— System model

*[1={Py P2 ---, Py }

» Asynchronous system, plus...
* Leader-election oracle (£2)

* Crash-recovery failure model
* Unreliable channels

« Stable storage

© Fernando Pedone

DD R e BE R e

Paxos

Learning a chosen value

|
Proposers {

Acceptors

Learners {

© Fernando Pedone

Paxos

Choosing a value

Proposers
{ \'

Acceptors

stable storage

Learners {

© Fernando Pedone

DD R e BE R e

Paxos

Z timeout
|
|

\'
Proposers {

)
b<b \

bal =b
msg=v

Acceptors

bal =b

msg=v

I
i

T

Learners {

© Fernando Pedone

Handling old ballot numbers

il [O e
=5 TR

PaXOS PaXOS The termination problem &
. o m
Proposers{ b’> b / f t by / f t b, ® /7[i ﬁbk\” s
NP el e,
e o]
e
£

eeeeeeeeeeeeeee

Paxos Paxos

A leader-based protocol Ballot reservation

l\ /ﬁ \N\\ /i |
JEE e I 1

