

 1

Fault-tolerant broadcasts
Part II: Algorithms

© Fernando Pedone

Fault-tolerant broadcasts

 Reliable broadcast
– System model

• ∏ = { p1, p2, …, pn }

• Asynchronous system (i.e., no timing assumptions)

• Crash-stop failure model (at most f failures)

• Quasi-reliable channels
– If p sends a message m to q and both processes are

correct, then q eventually receives m

© Fernando Pedone

Fault-tolerant broadcasts
– Non-uniform reliable broadcast

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
send(m) to all

Agreement: if a correct process delivers m,
then all correct processes eventually deliver m.

© Fernando Pedone

Fault-tolerant broadcasts
– Non-uniform reliable broadcast (cont’d)

P

Q

R

P

Q

R

P

Q

R

 2

© Fernando Pedone

Fault-tolerant broadcasts
– Uniform reliable broadcast

broadcast(UR, m) works as follows:
send(m) to all

upon receive(m)
if [for f+1 processes q: received(m) from q] then

deliver(UR, m)
if [didn’t send m yet] then send(m) to all

Uniform agreement: if a process delivers m,
then all correct processes eventually deliver m.

© Fernando Pedone

Fault-tolerant broadcasts
– Uniform reliable broadcast (cont’d) – f = 1

P

Q

R

P

Q

R

P

Q

R

© Fernando Pedone

Fault-tolerant broadcasts
– Cost of reliable broadcast algorithms

2δn2
Uniform
Reliable
Broadcast

δn2
Reliable
Broadcast
(optimized)

LatencyNumber of
Messages

© Fernando Pedone

Fault-tolerant broadcasts

– Reducing the number of messages
• Asynchronous system + S

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
start Task Propagate(m, sender(m))

Task Propagate(m, q)
if suspect q then send(m) to all

 3

© Fernando Pedone

Fault-tolerant broadcasts

 FIFO reliable broadcast
– Transforms Reliable Broadcast into

FIFO Uniform Reliable Broadcast

– Assumptions
• If m is the i-th message broadcast by p, then m is

tagged with sender(m) = p and seq#(m) = i

• Each process keeps a local vector of counters
next[1..n]

© Fernando Pedone

Fault-tolerant broadcasts

Initialization
msgSet ← Ø
next[q] ← 1, for each process q

To execute broadcast(F, m):
broadcast(R, m)

deliver(F,–) occurs as follows:
upon deliver(R, m) do

q ← sender(m)
msgSet ← msgSet ∪ { m }
while (∃m’ ∈ msgSet: sender(m’) = q and next[q] = seq#(m’))

deliver(F, m’)
next[q] ← next[q] + 1

© Fernando Pedone

Fault-tolerant broadcasts

 Causal reliable broadcast
– Transforms Uniform Reliable Broadcast into

Causal Reliable Broadcast

– Notation
• Message sequences: 〈 m1, m2, … 〉

• ⊥ is the empty sequence

• ⊕ is the concatenation operator

© Fernando Pedone

Fault-tolerant broadcasts

Initialization
rcntDlvrs ← ⊥

To execute broadcast(C, m):
broadcast(F, rcntDlvrs ⊕ 〈 m 〉)
rcntDlvrs ← ⊥

deliver(C,–) occurs as follows:
upon deliver(F, 〈 m1, m2, …, ml 〉) do
for i from 1 to l do

if p has not previously executed deliver(C, mi) then
deliver(C, mi)
rcntDlvrs ← rcntDlvrs ⊕ 〈 mi 〉

 4

© Fernando Pedone

Fault-tolerant broadcasts

Reliable
Broadcast

Causal Atomic
Broadcast

FIFO Atomic
Broadcast

Atomic
Broadcast

FIFO
Broadcast

Causal
Broadcast

Total order

Total order

Total order

FIFO order FIFO order

Causal orderCausal order

First
Transformation

Second
Transformation

© Fernando Pedone

Fault-tolerant broadcasts

 Atomic broadcast
– From atomic broadcast to consensus

P

Q

R

propose(v1)

propose(v2)

propose(v3)

decide(v2)

C
on

se
ns

usP

Q

R

broadcast(v1)

broadcast(v2)

deliver(v2)
deliver(v1)

A
to

m
ic

 b
ro

ad
ca

st

To execute propose(v):
broadcast(v)

Let v be the first value delivered
decide(v)

© Fernando Pedone

Fault-tolerant broadcasts
– From consensus to atomic broadcast

Initialization
R-delivered ← Ø
A-delivered ← Ø
k ← 0

To execute broadcast(A, m):
broadcast(R, m)

deliver(A,–) occurs as follows:
upon deliver(R, m) do

R-delivered ← R-delivered ∪ { m }
upon R-delivered \ A-delivered ≠ Ø

k ← k + 1
A-undelivered ← R-delivered \ A-delivered
propose(k, A-undelivered)
wait until decide(k, msgSetk)
A-deliverk ← msgSetk \ A-delivered
deliver all messages in A-deliverk in some deterministic order
A-delivered ← A-delivered ∪ A-deliverk

© Fernando Pedone

Fault-tolerant broadcasts
– From consensus to atomic broadcast (cont’d)

deliver(A,m1)
deliver(A,m2)propose(m3,m2)

propose(m2,m1,m3)

propose(m1,m2)

broadcast(R,m1)

broadcast(R,m2)

broadcast(R,m3)

P

Q

R

broadcast(A,m1)

broadcast(A,m2)

broadcast(A,m3)

 5

© Fernando Pedone

Fault-tolerant broadcasts
– From consensus to atomic broadcast (cont’d)

P

Q

R

Reliable broadcast Consensus

Possibly
suspecting the

coordinator

© Fernando Pedone

Fault-tolerant broadcasts

 Generic broadcast
– Single-message case

P

Q

R

m

Only message
Received so far

ACK(m)

© Fernando Pedone

Fault-tolerant broadcasts
– Two non-conflicting messages

P

Q

R

m1

m2

How many ACK’s are
needed for delivery?

ACK(m1,m2)

ACK(m2)

ACK(m1)

© Fernando Pedone

Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)

P1

P2

P3

P4

m1

m2

ACK(m1)

ACK(m1)

ACK(m2)

ACK(m2)

ACK(m1)

ACK(m2)

nACK ≤ n/2 ⇒ order violated

…

…

…

…

order violated

 6

© Fernando Pedone

Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)

P1

P2

P3

P4

P5

m1

m2

ACK(m1)

ACK(m1)

ACK(m1)

Conflict detected:
Consensus is needed

Consensus

© Fernando Pedone

Fault-tolerant broadcasts

– The general case (m1 and m2 conflict)

• Conflicts should be detected: nACK > n / 2

• For conflicting messages:
“If m1 and m2 conflict, and m1 (or m2) has been
delivered before consensus, then consensus cannot
contradict this order.”

How to ensure this???

© Fernando Pedone

Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)

P1

P2

P3

P4

P5

Consensus

ACK(m1)m1

m1 m2

m1 m2

m2 m1

m2 m1

CheckExchange all
ACKed messages

P2: m1

P1: m1

P3: m1

P4: m2

P5: m2

© Fernando Pedone

Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)

P1

P2

P3

P4

P5

m1

m3

m2

…

…

…ACK(m3)

ACK(m2)

ACK(m1) { P3:m 1 ; P4:m 2 ; P5:m3 }

{ P3:m 1 ; P4:m 2 ; P5:m3 }

{ P3:m 1 ; P4:m 2 ; P5:m3 }

Which messages
should be chosen?

 7

© Fernando Pedone

Fault-tolerant broadcasts
– If nACK = (n+1) / 2 (i.e., majority), how much

should nCHK be?
– How to choose a message in the “check

phase”?

– Problem: we can’t tolerate failures
– What can be done?

– Increase nACK… for example, if nACK = 4 and
n = 5, could we have nCHK = 4?

© Fernando Pedone

Fault-tolerant broadcasts

m1

nACK

m1

m1

m1

m1

m1

m1

m2

nCHK

Could m2 be delivered
in the “ack phase”?

Can we be sure that m1 was
delivered in the “ack phase”?

© Fernando Pedone

Fault-tolerant broadcasts

– What is the relation between nACK and nCHK?

P1

P2

P3

Pn-1

Pn

ACK

…

nACK

CHK
nCHK

n-nCHK

nCHK/2

nCHK/2 + (n-nCHK) < nACK

© Fernando Pedone

Fault-tolerant broadcasts
– The general case (cont’d)

nCHK/2 + (n-nCHK) < nACK
nCHK + 2n -2nCHK < 2nACK
-nCHK + 2n < 2nACK
2nACK + nCHK > 2n

Best case: nACK = nCHK = x
2x + x > 2n
x > 2n / 3 (Optimal for ACK with 2δ)

 8

© Fernando Pedone

Fault-tolerant broadcasts
– Optimality (i.e., lower bound)

P

Q

R

m

ACK(m)

S
δ δ

© Fernando Pedone

Fault-tolerant broadcasts
Initialization

R-delivered ← G-delivered ← Ø
pending1 ← g-Deliver1 ← Ø
k ← 1

To execute broadcast(m):
broadcast(R, m)

when deliver(R, m) do
R-delivered ← R-delivered ∪ { m }

when (R-delivered \ (G-delivered ∪ pendingk) ≠ Ø)
if [for all m, m’ ∈ (R-delivered \ G-delivered): m doesn’t conflict with m’] then

 pendingk ← R-delivered \ G-delivered
 send (k, pendingk, ACK) to all

else
 Handle conflict (next slide)

when receive (k, pendingk, ACK) from pj
while ∃m such that [for nACK pj: received (k, pendingk, ACK) from pj and

m ∈ (pendingk \ g-Deliverk)] do
 g-Deliverk ← g-Deliverk ∪ { m }
 deliver(m)

© Fernando Pedone

Fault-tolerant broadcasts
Handling conflicts:

when (R-delivered \ (G-delivered ∪ pendingk) ≠ Ø)
if [for all m, m’ ∈ (R-delivered \ G-delivered): m doesn’t conflict with m’] then

 ...
else

 send (k, pendingk, CHK) to all
 wait until [for nCHK pj : received (k, pendingk, CHK) from pj]
 msgSet = { m | for (nCHK+1)/2 pj : received (k, { …, m, … }, CHK) from pj

 propose(k, msgSet, (R-delivered \ (G-delivered ∪ pendingk)))
 wait until decide (k, NCset, Cset)

 for each m ∈ NCset \ (G-delivered ∪ g-Deliverk) do deliver(m)
 in ID order: for each m Cset \ (G-delivered ∪ g-Deliverk) do deliver(m)
 G-delivered ← G-delivered ∪ NCset ∪ Cset

 k ← k + 1
 pendingk ← g-Deliverk ← Ø

© Fernando Pedone

Paxos

 The part-time parliament
– Leslie Lamport

– Consensus algorithm

– SRC Research Report 49, Sep. 1, 1989

– ACM TOCS, May 1998
• Submitted in 1990

 9

© Fernando Pedone

Paxos

 The protocol
– System model

• ∏ = { p1, p2, …, pn }

• Asynchronous system, plus…

• Leader-election oracle (Ω)

• Crash-recovery failure model

• Unreliable channels

• Stable storage

© Fernando Pedone

Phase 1b Phase 2a Phase 2bPhase 1a

Paxos

Proposers

Acceptors

Learners

v
ballot number b

bal =0
msg=⊥

bal =0
msg=⊥

bal =0
msg=⊥

bal =b
msg=⊥

if b>bal then bal←b

bal =b
msg=⊥

bal =b
msg=⊥

b,v
bal =b
msg=v

bal =b
msg=v

bal =b
msg=v

b,v

stable storage

Choosing a value

© Fernando Pedone

Phase 2b

b,v

b,v

b,v

Phase 3Phase 2b

Paxos

Proposers

Acceptors

Learners

b,v v

Learning a chosen value

© Fernando Pedone

Paxos

Proposers

Acceptors

Learners

v’

b’< b

bal =b
msg=v

bal =b
msg=v

bal =b
msg=v

ignore message

Handling old ballot numbers

timeout

 10

© Fernando Pedone

Paxos

Proposers

Acceptors

Learners

v’

b’> b

bal =b
msg=v

bal =b
msg=v

bal =b
msg=v

b’,v

bal =b’
msg=v

bal =b’
msg=v

bal =b’
msg=v

new value = v

b’,v

b’,v

Handling new ballot numbers © Fernando Pedone

Paxos

P

A

L

v1,b1

b1
bal =0
msg=⊥

bal =0
msg=⊥

bal =0
msg=⊥

bal =b1
msg=⊥

bal =b1
msg=⊥

bal =b1
msg=⊥

v2,b2
b1

b2
bal =b2
msg=⊥

bal =b2
msg=⊥

bal =b2
msg=⊥

b2

b1,v1 b3

bal =b3
msg=⊥

bal =b3
msg=⊥

bal =b3
msg=⊥

The termination problem 

© Fernando Pedone

Paxos

P

A

v1

bal =0
msg=⊥

bal =0
msg=⊥

bal =0
msg=⊥

v2

leader

v1

v2

A leader-based protocol

Phase 1 Phase 2

1

1

1

2

2

2

© Fernando Pedone

Paxos

P

A

leader

Ballot reservation

1

1

1

…

Consensus 1

1

1

1
Consensus n

v2

2

2

2
Consensus 1

