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Fault-tolerant broadcasts
Part II: Algorithms

© Fernando Pedone

Fault-tolerant broadcasts

 Reliable broadcast
– System model

• ∏ = { p1, p2, …, pn }

• Asynchronous system (i.e., no timing assumptions)

• Crash-stop failure model (at most f failures)

• Quasi-reliable channels
– If p sends a message m to q and both processes are

correct, then q eventually receives m
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Fault-tolerant broadcasts
– Non-uniform reliable broadcast

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
send(m) to all

Agreement: if a correct process delivers m, 
then all correct processes eventually deliver m.
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Fault-tolerant broadcasts
– Non-uniform reliable broadcast (cont’d)

P

Q

R

P

Q

R

P

Q

R



  

 2

© Fernando Pedone

Fault-tolerant broadcasts
– Uniform reliable broadcast

broadcast(UR, m) works as follows:
send(m) to all

upon receive(m)
if [for f+1 processes q: received(m) from q] then

deliver(UR, m)
if [didn’t send m yet] then send(m) to all

Uniform agreement: if a process delivers m, 
then all correct processes eventually deliver m.
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Fault-tolerant broadcasts
– Uniform reliable broadcast (cont’d) – f = 1
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Fault-tolerant broadcasts
– Cost of reliable broadcast algorithms
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Fault-tolerant broadcasts

– Reducing the number of messages
• Asynchronous system + S

broadcast(R, m) works as follows:
send(m) to all

upon receive(m) for the first time do
deliver(R, m)
start Task Propagate(m, sender(m))

Task Propagate(m, q)
if suspect q then send(m) to all
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Fault-tolerant broadcasts

 FIFO reliable broadcast
– Transforms Reliable Broadcast into

FIFO Uniform Reliable Broadcast

– Assumptions
• If m is the i-th message broadcast by p, then m is

tagged with sender(m) = p and seq#(m) = i

• Each process keeps a local vector of counters
next[1..n]
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Fault-tolerant broadcasts

Initialization
msgSet ← Ø
next[q] ← 1, for each process q

To execute broadcast(F, m):
broadcast(R, m)

deliver(F,–) occurs as follows:
upon deliver(R, m) do

q ← sender(m)
msgSet ← msgSet ∪ { m }
while (∃m’ ∈ msgSet: sender(m’) = q and next[q] = seq#(m’))

deliver(F, m’)
next[q] ← next[q] + 1
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Fault-tolerant broadcasts

 Causal reliable broadcast
– Transforms Uniform Reliable Broadcast into

Causal Reliable Broadcast

– Notation
• Message sequences: 〈 m1, m2, … 〉

• ⊥ is the empty sequence

• ⊕ is the concatenation operator
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Fault-tolerant broadcasts

Initialization
rcntDlvrs ← ⊥

To execute broadcast(C, m):
broadcast(F, rcntDlvrs ⊕ 〈 m 〉 )
rcntDlvrs ← ⊥

deliver(C,–) occurs as follows:
upon deliver(F, 〈 m1, m2, …, ml 〉) do
for i from 1 to l do

if p has not previously executed deliver(C, mi) then
deliver(C, mi)
rcntDlvrs ← rcntDlvrs ⊕ 〈 mi 〉
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Fault-tolerant broadcasts
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Fault-tolerant broadcasts

 Atomic broadcast
– From atomic broadcast to consensus
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To execute propose(v):
broadcast(v)

Let v be the first value delivered
decide(v)
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Fault-tolerant broadcasts
– From consensus to atomic broadcast

Initialization
R-delivered ← Ø
A-delivered ← Ø
k ← 0

To execute broadcast(A, m):
broadcast(R, m)

deliver(A,–) occurs as follows:
upon deliver(R, m) do

R-delivered ← R-delivered ∪ { m }
upon R-delivered \ A-delivered ≠ Ø

k ← k + 1
A-undelivered ← R-delivered \ A-delivered
propose(k, A-undelivered)
wait until decide(k, msgSetk)
A-deliverk ← msgSetk \ A-delivered
deliver all messages in A-deliverk in some deterministic order
A-delivered ← A-delivered ∪ A-deliverk
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Fault-tolerant broadcasts
– From consensus to atomic broadcast (cont’d)
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Fault-tolerant broadcasts
– From consensus to atomic broadcast (cont’d)
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Fault-tolerant broadcasts

 Generic broadcast
– Single-message case
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Fault-tolerant broadcasts
– Two non-conflicting messages
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Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)
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Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)
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Fault-tolerant broadcasts

– The general case (m1 and m2 conflict)

• Conflicts should be detected: nACK > n / 2

• For conflicting messages:
“If m1 and m2 conflict, and m1 (or m2) has been
delivered before consensus, then consensus cannot
contradict this order.”

How to ensure this???
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Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)
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Fault-tolerant broadcasts
– The general case (m1 and m2 conflict)
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Fault-tolerant broadcasts
– If nACK = (n+1) / 2 (i.e., majority), how much

should nCHK be?
– How to choose a message in the “check

phase”?

– Problem: we can’t tolerate failures
– What can be done?

– Increase nACK… for example, if nACK = 4 and
n = 5, could we have nCHK = 4?
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Fault-tolerant broadcasts
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Could m2 be delivered 
in the “ack phase”?

Can we be sure that m1 was
delivered in the “ack phase”?
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Fault-tolerant broadcasts

– What is the relation between nACK and nCHK?
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Fault-tolerant broadcasts
– The general case (cont’d)

nCHK/2 + (n-nCHK) < nACK
nCHK + 2n -2nCHK < 2nACK
-nCHK + 2n < 2nACK
2nACK + nCHK > 2n

Best case: nACK = nCHK = x
2x + x > 2n
x > 2n / 3 (Optimal for ACK with 2δ)
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Fault-tolerant broadcasts
– Optimality (i.e., lower bound)
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Fault-tolerant broadcasts
Initialization

R-delivered ← G-delivered ← Ø
pending1 ← g-Deliver1 ← Ø
k ← 1

To execute broadcast(m):
broadcast(R, m)

when deliver(R, m) do
R-delivered ← R-delivered ∪ { m }

when (R-delivered \ (G-delivered ∪ pendingk) ≠ Ø)
if [ for all m, m’ ∈ (R-delivered \ G-delivered): m doesn’t conflict with m’ ] then

    pendingk ← R-delivered \ G-delivered
    send (k, pendingk, ACK) to all

else
    Handle conflict (next slide)

when receive (k, pendingk, ACK) from pj
while ∃m such that [ for nACK pj: received (k, pendingk, ACK) from pj and

m ∈ (pendingk \ g-Deliverk) ] do
    g-Deliverk ← g-Deliverk ∪ { m }
    deliver(m)
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Fault-tolerant broadcasts
Handling conflicts:

when (R-delivered \ (G-delivered ∪ pendingk) ≠ Ø)
if [ for all m, m’ ∈ (R-delivered \ G-delivered): m doesn’t conflict with m’ ] then

    ...
else

    send (k, pendingk, CHK) to all
    wait until [ for nCHK pj : received (k, pendingk, CHK) from pj ]
    msgSet = { m | for (nCHK+1)/2 pj : received (k, { …, m, … }, CHK) from pj

    propose(k, msgSet, (R-delivered \ (G-delivered ∪ pendingk)))
    wait until decide (k, NCset, Cset)

    for each m ∈ NCset \ (G-delivered ∪ g-Deliverk) do deliver(m)
    in ID order: for each m Cset \ (G-delivered ∪ g-Deliverk) do deliver(m)
    G-delivered ← G-delivered ∪ NCset ∪ Cset

    k ← k + 1
    pendingk ← g-Deliverk ← Ø
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Paxos

 The part-time parliament
– Leslie Lamport

– Consensus algorithm

– SRC Research Report 49, Sep. 1, 1989

– ACM TOCS, May 1998
• Submitted in 1990
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Paxos

 The protocol
– System model

• ∏ = { p1, p2, …, pn }

• Asynchronous system, plus…

• Leader-election oracle (Ω)

• Crash-recovery failure model

• Unreliable channels

• Stable storage
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Phase 1b Phase 2a Phase 2bPhase 1a

Paxos

Proposers

Acceptors

Learners

v
ballot number b

bal  =0
msg=⊥

bal  =0
msg=⊥

bal  =0
msg=⊥

bal  =b
msg=⊥

if b>bal then bal←b

bal  =b
msg=⊥

bal  =b
msg=⊥

b,v
bal  =b
msg=v

bal  =b
msg=v

bal  =b
msg=v

b,v

stable storage

Choosing a value
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Phase 2b

b,v

b,v

b,v

Phase 3Phase 2b

Paxos

Proposers

Acceptors

Learners

b,v v

Learning a chosen value
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Paxos

Proposers
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Learners

v’

b’< b

bal  =b
msg=v

bal  =b
msg=v

bal  =b
msg=v

ignore message

Handling old ballot numbers

timeout
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Paxos

Proposers

Acceptors

Learners

v’
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bal  =b
msg=v

bal  =b
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bal  =b
msg=v

b’,v

bal  =b’
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bal  =b’
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bal  =b’
msg=v
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Handling new ballot numbers © Fernando Pedone
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The termination problem 
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Paxos
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A leader-based protocol
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Paxos
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