Streaming algorithms

Motivation

Motivation

- Given a long stream of data, process it quickly to compute some interesting statistic

Motivation

- Given a long stream of data, process it quickly to compute some interesting statistic
- Example: routers, possible statistics:
- IP's that are way more often that a typical one
- etc.

Model

Model

- Given a stream of elements, estimate a function of the frequencies f_{i}

Model

- Given a stream of elements, estimate a function of the frequencies f_{i}
- Do not want to store frequencies explicitly

Model

- Given a stream of elements, estimate a function of the frequencies f_{i}
- Do not want to store frequencies explicitly

IP	Count
128.74 .251 .151	42
77.88 .55 .55	5
204.79 .197 .200	1

A puzzle

A puzzle

- Given a stream of \mathbf{n} elements, figure out if there is an element with $f_{i}>0.5 \mathrm{n}$
- Allow two passes and O(1) words of storage

A puzzle

- Given a stream of \mathbf{n} elements, figure out if there is an element with $\mathrm{f}_{\mathrm{i}}>0.5 \mathrm{n}$
- Allow two passes and O(1) words of storage
- Solution: store a candidate \mathbf{x} and a count \mathbf{c}; on seeing \mathbf{y} :
- If $c=0$, then $x=y, c=1$
- If $x=y$, then $\mathbf{c + +}$
- C--
- During the second pass, count f_{x}

A puzzle

- Given a stream of \mathbf{n} elements, figure out if there is an element with $\mathrm{f}_{\mathrm{i}}>0.5 \mathrm{n}$
- Allow two passes and O(1) words of storage
- Solution: store a candidate \mathbf{x} and a count \mathbf{c}; on seeing \mathbf{y} :
- If $c=0$, then $x=y, c=1$
- If $x=y$, then $c++$
- C--
- During the second pass, count f_{x}
- Why works: removing two distinct elements preserves majority

A puzzle

- Given a stream of \mathbf{n} elements, figure out if there is an element with $\mathrm{f}_{\mathrm{i}}>0.5 \mathrm{n}$
- Allow two passes and O(1) words of storage
- Solution: store a candidate \mathbf{x} and a count \mathbf{c}; on seeing \mathbf{y} :
- If $c=0$, then $x=y, c=1$
- If $x=y$, then $c++$
- C--
- During the second pass, count f_{x}
- Why works: removing two distinct elements preserves majority

Deterministic heavy hitters

Deterministic heavy hitters

- Generalization: find all elements with $\mathrm{f}_{\mathrm{i}}>\boldsymbol{\varepsilon} \boldsymbol{n}$ (there are less than $1 / \varepsilon$ of them).

Deterministic heavy hitters

- Generalization: find all elements with $\mathrm{f}_{\mathrm{i}}>\boldsymbol{\varepsilon} \boldsymbol{n}$ (there are less than $1 / \varepsilon$ of them).
- [Misra, Gries 1982]: maintain a set of at most $1 / \varepsilon$ candidates with counters
- If the current element is in the set, increase the counter
- Add if can
- Subtract 1 from all the counters and remove zeros

Deterministic heavy hitters

- Generalization: find all elements with $\mathbf{f}_{\mathrm{i}}>\boldsymbol{\varepsilon} \boldsymbol{n}$ (there are less than $1 / \varepsilon$ of them).
- [Misra, Gries 1982]: maintain a set of at most $1 / \varepsilon$ candidates with counters
- If the current element is in the set, increase the counter
- Add if can
- Subtract 1 from all the counters and remove zeros
- In the end, get an estimate on $\mathbf{f}_{\mathbf{i}}$ within additive $\boldsymbol{\varepsilon} \mathbf{n}$

Deterministic heavy hitters

- Generalization: find all elements with $\mathrm{f}_{\mathrm{i}}>\boldsymbol{\varepsilon} \boldsymbol{n}$ (there are less than $1 / \varepsilon$ of them).
- [Misra, Gries 1982]: maintain a set of at most $1 / \varepsilon$ candidates with counters
- If the current element is in the set, increase the counter
- Add if can
- Subtract 1 from all the counters and remove zeros
- In the end, get an estimate on f_{i} within additive $\boldsymbol{\varepsilon}$
- Second pass to count frequencies for all the candidates

Summary

Summary

- Two pass deterministic exact algorithm for heavy hitters

Summary

- Two pass deterministic exact algorithm for heavy hitters
- Advantages:
- Simple and practical (almost trivial to implement!)
- Deterministic
- Clearly optimal

Summary

- Two pass deterministic exact algorithm for heavy hitters
- Advantages:
- Simple and practical (almost trivial to implement!)
- Deterministic
- Clearly optimal
- Drawbacks:
- Two passes
- Does not support deletions
- Will see later a stronger guarantee $\left(L_{2}\right.$ vs $\left.L_{1}\right)$

Sketches

Sketches

- Function $f(\mathbf{x}, \mathbf{y})$, where \mathbf{x} and \mathbf{y} are large inputs

Sketches

- Function $f(\mathbf{x}, \mathbf{y})$, where \mathbf{x} and \mathbf{y} are large inputs
- Sketch: a random compression function $\mathbf{s k}(\mathbf{x})$ and a decoding algorithm \mathbf{D} such that with high probability D(sk(x), sk(y)) $f(x, y)$

Sketches

- Function $f(\mathbf{x}, \mathbf{y})$, where \mathbf{x} and \mathbf{y} are large inputs
- Sketch: a random compression function $\mathbf{s k}(\mathbf{x})$ and a decoding algorithm \mathbf{D} such that with high probability D(sk(x), sk(y)) $\sim f(x, y)$
- An example: the Johnson-Lindenstrauss lemma! Can compress a vector into $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ dimensions to estimate the Euclidean norm of the difference

Sketches

- Function $f(\mathbf{x}, \mathbf{y})$, where \mathbf{x} and \mathbf{y} are large inputs
- Sketch: a random compression function $\mathbf{s k}(\mathbf{x})$ and a decoding algorithm \mathbf{D} such that with high probability D(sk(x), sk(y)) $\sim f(x, y)$
- An example: the Johnson-Lindenstrauss lemma! Can compress a vector into $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ dimensions to estimate the Euclidean norm of the difference
- Linear sketches: $\mathbf{s k}(\mathbf{x})=A x$ for random A

Sketches

- Function $f(\mathbf{x}, \mathbf{y})$, where \mathbf{x} and \mathbf{y} are large inputs
- Sketch: a random compression function sk(x) and a decoding algorithm \mathbf{D} such that with high probability D(sk(x), sk(y)) $\sim f(x, y)$
- An example: the Johnson-Lindenstrauss lemma! Can compress a vector into $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ dimensions to estimate the Euclidean norm of the difference
- Linear sketches: sk(x) = Ax for random A
- Easy to maintain Ax under insertions/deletions
... with a caveat!
... with a caveat!
- Can't afford to store a sketch matrix A

... with a caveat!

- Can't afford to store a sketch matrix A
- Need to generate it on the fly using small amount of randomness (bounded independence, Nisan's generator etc.)

... with a caveat!

- Can't afford to store a sketch matrix A
- Need to generate it on the fly using small amount of randomness (bounded independence, Nisan's generator etc.)
- But let's not worry about it!

Taxonomy of linear sketches

Taxonomy of linear sketches

- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for the L_{2} norm

Taxonomy of linear sketches

- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for the L_{2} norm
- O(log \mathbf{n} / ε) for ε-Heavy Hitters (will see in a moment)

Taxonomy of linear sketches

- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for the L_{2} norm
- O(log $\mathbf{n} / \varepsilon)$ for ε-Heavy Hitters (will see in a moment)
- O(log n / ε^{2}) for ε-Heavy Hitters w.r.t. L_{2} norm (stronger)

Taxonomy of linear sketches

- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for the L_{2} norm
- O(log $\mathbf{n} / \varepsilon)$ for ε-Heavy Hitters (will see in a moment)
- O(log n / ε^{2}) for ε-Heavy Hitters w.r.t. L_{2} norm (stronger)
- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for \mathbf{L}_{p} norm for $\mathbf{0}<\mathbf{p}<\mathbf{2}$ (as opposed to $\mathrm{p}>\mathbf{2}$)

Taxonomy of linear sketches

- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for the L_{2} norm
- O(log $\mathbf{n} / \varepsilon)$ for ε-Heavy Hitters (will see in a moment)
- O(log n / ε^{2}) for ε-Heavy Hitters w.r.t. L_{2} norm (stronger)
- $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ for \mathbf{L}_{p} norm for $\mathbf{0}<\mathbf{p}<\mathbf{2}$ (as opposed to $p>2$)
- Graph sketches etc.

Point queries

Point queries

- Receive \mathbf{n} updates "insert/delete k", where $\mathbf{1} \leq \mathbf{k} \leq \mathbf{u}$

Point queries

- Receive \mathbf{n} updates "insert/delete k", where $\mathbf{1} \leq \mathbf{k} \leq \mathbf{u}$
- Want: find all elements with frequencies > $\boldsymbol{\varepsilon n}$

Point queries

- Receive \mathbf{n} updates "insert/delete k", where $\mathbf{1} \leq \mathbf{k} \leq \mathbf{u}$
- Want: find all elements with frequencies $>\boldsymbol{\varepsilon n}$
- Point queries: for $1 \leq k \leq u$ estimate x_{k} up to $\pm \varepsilon\|x\|_{1}$ w.h.p.

Count-min sketch

Count-min sketch

- Idea: [Cormode, Muthukrishnan 2005]
- For a hash $\mathbf{h}:[\mathbf{u}] \rightarrow[\mathrm{t}]$, store sums for each of the t bins

Count-min sketch

- For a hash $\mathbf{h}:[\mathbf{u}] \rightarrow[\mathrm{t}]$, store sums for each of the t bins

Count-min sketch

- Idea: [Cormode, Muthukrishnan 2005]
- For a hash $\mathrm{h}:[\mathrm{u}] \rightarrow[\mathrm{t}]$, store sums for each of the t bins
- Repeat for s hashes
- For a point query \mathbf{k}, take the minimum of the sums for $h(k)$
- $t=1 / \varepsilon, k=0(\log (1 / \delta))$

Count-min sketch ctd.

Count-min sketch ctd.

- Linear sketch

Count-min sketch ctd.

- Linear sketch
- Enough to have 2-independent hash functions

Count-min sketch ctd.

- Linear sketch
- Enough to have 2-independent hash functions
- Important to have fast hash functions, lots of research in this direction

Count-min sketch ctd.

- Linear sketch
- Enough to have 2-independent hash functions
- Important to have fast hash functions, lots of research in this direction
- A stronger version: for $\mathbf{1} \leq \mathbf{k} \leq \mathbf{u}$ estimate $\mathbf{x}_{\mathbf{k}}$ up to $\mathbf{\pm} \boldsymbol{\varepsilon}\|\mathbf{x}\|_{2}$ w.h.p. [Charikar, Chen, Farach-Colton 2002]
- Combine elements with random signs
- Need range of size $\mathbf{t}=1 / \varepsilon^{2}$

Count-min sketch ctd.

- Linear sketch
- Enough to have 2-independent hash functions

- Important to have fast hash functions, lots of research in this direction
- A stronger version: for $\mathbf{1} \leq \mathbf{k} \leq \mathbf{u}$ estimate $\mathbf{x}_{\mathbf{k}}$ up to $\pm \boldsymbol{\varepsilon}\|\mathbf{x}\|_{2}$ w.h.p. [Charikar, Chen, Farach-Colton 2002]
- Combine elements with random signs
- Need range of size $t=1 / \varepsilon^{2}$

Graph sketching

Graph sketching

- Can we sketch anything else besides vectors?

Graph sketching

- Can we sketch anything else besides vectors?
- Yes! Graph sketching [Ahn, Guha, McGregor 2012]

Graph sketching

- Can we sketch anything else besides vectors?
- Yes! Graph sketching [Ahn, Guha, McGregor 2012]
- Want to maintain an n-node undirected graph under edge insertions/deletions in $\mathbf{o}\left(\mathbf{n}^{2}\right)$ space and then compute something useful

Graph sketching

- Can we sketch anything else besides vectors?
- Yes! Graph sketching [Ahn, Guha, McGregor 2012]
- Want to maintain an n-node undirected graph under edge insertions/deletions in $\mathbf{o}\left(\mathbf{n}^{2}\right)$ space and then compute something useful
- Finding connected components?

Connectivity

Connectivity

- [Ahn, Guha, McGregor 2012]: there are linear sketches of size \mathbf{n} polylog(n) for connectivity (and other problems)

Connectivity

- [Ahn, Guha, McGregor 2012]: there are linear sketches of size \mathbf{n} polylog(n) for connectivity (and other problems)
- Even cooler: gives a way to compress (linearly) each row of an adjacency matrix into polylog(n) words

Connectivity

- [Ahn, Guha, McGregor 2012]: there are linear sketches of size \mathbf{n} polylog(n) for connectivity (and other problems)
- Even cooler: gives a way to compress (linearly) each row of an adjacency matrix into polylog(n) words
- The plan:
- Design a "classical" algorithm that is amenable to sketching
- Implement it using sketches

Classical algorithm

- Repeat $\mathbf{O}(\log \mathrm{n})$ times:
- For every node find an arbitrary neighbor
- Collapse subgraphs formed by these pairs

Vector representation

Vector representation

- For every node \mathbf{v} store an \mathbf{n}^{2}-dimensional $\left\{-\mathbf{1}, \mathbf{0}, \mathbf{1 \}}\right.$-vector a_{v}

Vector representation

- For every node \mathbf{v} store an \mathbf{n}^{2}-dimensional $\left\{-\mathbf{1}, \mathbf{0}, \mathbf{1 \}}\right.$-vector a_{v}
- For every set of nodes the support of the sum of $\mathbf{a}_{\mathbf{v}}$'s corresponds to the outgoing edges

Vector representation

- For every node \mathbf{v} store an \mathbf{n}^{2}-dimensional $\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$-vector a_{v}
- For every set of nodes the support of the sum of a_{v} 's corresponds to the outgoing edges
- Remains: linear sketch for finding a coordinate in the support of a vector
- Linearity is crucial

L_{0}-sampling

L_{0}-sampling

- Linear sketch for a vector that would allow to sample (once) uniformly a coordinate from the support

L_{0}-sampling

- Linear sketch for a vector that would allow to sample (once) uniformly a coordinate from the support
- Idea: [Jowhari, Saglam, Tardos 2011]
- Subsample at all rates
- Use sparse recovery to recover the (small) support of a subsample

Connectivity: a wrap-up

Connectivity: a wrap-up

- Need a fresh sketch at every iteration
- The probability of failure is over the sketch construction

Lower bounds

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words
- What about other L_{p} ?

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words
- What about other L_{p} ?
- [Indyk 2000]: the same bound for $0<p<2$ (unlike insertions-only, L_{1} is not obvious at all)

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words
- What about other L_{p} ?
- [Indyk 2000]: the same bound for $0<p<2$ (unlike insertions-only, L_{1} is not obvious at all)
- Not so for p > 2! [Alon, Matias, Szegedy 1995], [Bar-Yossef, Jayram, Kumar, Sivakumar 2002], [Indyk, Woodruff 2005]

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words
- What about other L_{p} ?
- [Indyk 2000]: the same bound for $0<p<2$ (unlike insertions-only, L_{1} is not obvious at all)
- Not so for p > 2! [Alon, Matias, Szegedy 1995], [Bar-Yossef, Jayram, Kumar, Sivakumar 2002], [Indyk, Woodruff 2005]

Need around d $\mathbf{d}^{1-2 / p}$ words for \mathbf{d} dimensions!

Lower bounds

- Can stream/sketch L_{2} norm using $\mathbf{O}\left(1 / \varepsilon^{2}\right)$ words
- What about other L_{p} ?
- [Indyk 2000]: the same bound for $0<p<2$ (unlike insertions-only, L_{1} is not obvious at all)
- Not so for p > 2! [Alon, Matias, Szegedy 1995], [Bar-Yossef, Jayram, Kumar, Sivakumar 2002], [Indyk, Woodruff 2005]

Need around $\mathbf{d}^{1-2 / p}$ words for \mathbf{d} dimensions!

- How can one even hope to prove a lower bound like this?

Communication complexity

Communication complexity

$$
\begin{array}{cc}
\text { Alice } & \longmapsto \in\{0,1\}^{n} \\
& \\
f(x, y) & y \in\{0,1\}^{n}
\end{array}
$$

Disjointness

- $f(x, y)=\exists i:\left(x_{i}=y_{i}=1\right)$
- Any randomized communication protocol requires $\Omega(n)$ communication
- A conceptual proof using information complexity [Bar-Yossef, Jayram, Kumar, Sivakumar 2002]

Estimating max-norm

- Stream of elements from \{1, ..., d\}, maximum frequency
- [Alon, Matias, Szegedy 1995]: 1.99-approximation requires $\Omega(d)$ space
- Alice and Bob want to solve disjointness
- Alice performs her updates
- Alice sends the memory to Bob
- Bob performs his updates
- Max-frequency 1 vs. 2
-Even one-way lower bound for disjointness is enough (easy!)

Lots of practical work

Lots of practical work

- HyperLogLog for counting distinct elements [Flajolet, Fusy, Gandouet, Meunier 2007]

Lots of practical work

- HyperLogLog for counting distinct elements [Flajolet, Fusy, Gandouet, Meunier 2007]
- 1-bit minwise hashing for estimating similarity between documents [Konig, Li 2008]

Lots of practical work

- HyperLogLog for counting distinct elements [Flajolet, Fusy, Gandouet, Meunier 2007]
- 1-bit minwise hashing for estimating similarity between documents [Konig, Li 2008]

