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• Given a long stream of data, process it quickly to compute 
some interesting statistic

• Example: routers, possible statistics:
• IP’s that are way more often that a typical one

• etc.
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IP Count

128.74.251.151 42

77.88.55.55 5

204.79.197.200 1
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• Generalization: find all elements with fi > εn (there are less 
than 1/ε of them).

• [Misra, Gries 1982]: maintain a set of at most 1/ε candidates 
with counters
• If the current element is in the set, increase the counter

• Add if can

• Subtract 1 from all the counters and remove zeros

• In the end, get an estimate on fi within additive εn

• Second pass to count frequencies for all the candidates
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• Two pass deterministic exact algorithm for heavy hitters

• Advantages:
• Simple and practical (almost trivial to implement!)

• Deterministic

• Clearly optimal

• Drawbacks:
• Two passes

• Does not support deletions

• Will see later a stronger guarantee (L2 vs L1)
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• Function f(x, y), where x and y are large inputs

• Sketch: a random compression function sk(x) and a 
decoding algorithm D such that with high probability 
D(sk(x), sk(y)) ≈ f(x, y)

• An example: the Johnson—Lindenstrauss lemma! Can 
compress a vector into O(1 / ε2) dimensions to estimate the 
Euclidean norm of the difference

• Linear sketches: sk(x) = Ax for random A

• Easy to maintain Ax under insertions/deletions
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• Can’t afford to store a sketch matrix A

• Need to generate it on the fly using small amount of 
randomness (bounded independence, Nisan’s generator etc.)

• But let’s not worry about it!
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• O(1 / ε2) for the L2 norm

• O(log n / ε) for ε-Heavy Hitters (will see in a moment)

• O(log n / ε2) for ε-Heavy Hitters w.r.t. L2 norm (stronger)

• O(1 / ε2) for Lp norm for 0 < p < 2 (as opposed to p > 2)

• Graph sketches etc.
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• Receive n updates “insert/delete k”, where 1 ≤ k ≤ u

• Want: find all elements with frequencies > εn

• Point queries: for 1 ≤ k ≤ u estimate xk up to ± ε ‖x‖1 w.h.p.
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• Idea: [Cormode, Muthukrishnan 2005]
• For a hash h: [u] → [t], store sums for each of 

the t bins
• Repeat for s hashes
• For a point query k, take the minimum of the 

sums for h(k)
• t=1/ε, k=O(log(1/δ))
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• Can we sketch anything else besides vectors?

• Yes! Graph sketching [Ahn, Guha, McGregor 2012]

• Want to maintain an n-node undirected graph under edge 
insertions/deletions in o(n2) space and then compute 
something useful

• Finding connected components?
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• [Ahn, Guha, McGregor 2012]: there are linear sketches of 
size n polylog(n) for connectivity (and other problems)

• Even cooler: gives a way to compress (linearly) each row of 
an adjacency matrix into polylog(n) words

• The plan:
• Design a “classical” algorithm that is amenable to sketching

• Implement it using sketches



• Repeat O(log n) times:
• For every node find an arbitrary neighbor

• Collapse subgraphs formed by these pairs
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• For every node v store an n2-dimensional {-1, 0, 1}-vector av

• For every set of nodes the support of the sum of av’s 
corresponds to the outgoing edges

• Remains: linear sketch for finding a coordinate in the 
support of a vector
• Linearity is crucial





• Linear sketch for a vector that would allow to sample (once) 
uniformly a coordinate from the support



• Linear sketch for a vector that would allow to sample (once) 
uniformly a coordinate from the support

• Idea: [Jowhari, Saglam, Tardos 2011]
• Subsample at all rates

• Use sparse recovery to recover the (small) support of a subsample





• Need a fresh sketch at every iteration
• The probability of failure is over the sketch construction
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• Can stream/sketch L2 norm using O(1 / ε2) words

• What about other Lp?

• [Indyk 2000]: the same bound for 0 < p < 2 (unlike 
insertions-only, L1 is not obvious at all)

• Not so for p > 2! [Alon, Matias, Szegedy 1995], [Bar-Yossef, 
Jayram, Kumar, Sivakumar 2002], [Indyk, Woodruff 2005]

Need around d1-2/p words for d dimensions!

• How can one even hope to prove a lower bound like this?





Alice Bob

𝑥 ∈ {0,1}𝑛 𝑦 ∈ {0,1}𝑛

𝑓(𝑥, 𝑦)



• 𝑓 𝑥, 𝑦 = ∃𝑖: 𝑥𝑖 = 𝑦𝑖 = 1

• Any randomized communication protocol requires Ω 𝑛
communication

• A conceptual proof using information complexity

[Bar-Yossef, Jayram, Kumar, Sivakumar 2002]



• Stream of elements from {1, …, d}, maximum frequency

• [Alon, Matias, Szegedy 1995]: 1.99-approximation requires 
Ω(𝑑) space

• Alice and Bob want to solve disjointness
• Alice performs her updates

• Alice sends the memory to Bob

• Bob performs his updates

• Max-frequency 1 vs. 2

• Even one-way lower bound for disjointness is enough (easy!)
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• HyperLogLog for counting distinct elements [Flajolet, Fusy, 
Gandouet, Meunier 2007]

• 1-bit minwise hashing for estimating similarity between 
documents [Konig, Li 2008]

• …


