"algorithms for Big Data"

Lecture 4: Massively Parallel Computation

Slides at http://grigory.us/big-data-csclub.html

Grigory Yaroslavtsev (Indiana University, Bloomington)

http://grigory.us

Clustering on Clusters: Overview

- Algorithm design for massively parallel computing
 - Blog: http://grigory.us/blog/mapreduce-model/
- MPC algorithms for graphs
 - Connectivity
 - Correlation clustering
- MPC algorithms for vectors
 - K-means
 - Single-linkage clustering
- Open problems and directions

Clustering on Clusters: Overview

	Graphs	Vectors
Basic	Connectivity	K-means
Advanced	Correlation Clustering	Single-Linkage Clustering

Cluster Computation (a la BSP)

- Input: size n (e.g. n = billions of edges in a graph)
- M Machines, S Space (RAM) each
 - Constant overhead in RAM: $\mathbf{M} \cdot \mathbf{S} = O(\mathbf{n})$
 - $-S = n^{1-\epsilon}$, e.g. $\epsilon = 0.1$ or $\epsilon = 0.5$ ($M = S = O(\sqrt{n})$)
- Output: solution to a problem (often size O(n))
 - Doesn't fit in local RAM ($S \ll n$)

Cluster Computation (a la BSP)

- Computation/Communication in R rounds:
 - Every machine performs a **near-linear time** computation => Total user time $O(S^{1+o(1)}R)$
 - Every machine sends/receives at most S bits of information => Total communication O(nR).

MapReduce-style computations

YAHOO! Google

What I won't discuss today

- PRAMs (shared memory, multiple processors) (see e.g. [Karloff, Suri, Vassilvitskii'10])
 - Computing XOR requires $\widetilde{\Omega}(\log n)$ rounds in CRCW PRAM
 - Can be done in $O(\log_s n)$ rounds of MapReduce
- Pregel-style systems, Distributed Hash Tables (see e.g. Ashish Goel's class notes and papers)
- Lower-level implementation details (see e.g. Rajaraman-Leskovec-Ullman book)

Models of parallel computation

Bulk-Synchronous Parallel Model (BSP) [Valiant,90]

Pro: Most general, generalizes all other models

Con: Many parameters, hard to design algorithms

- Massive Parallel Computation [Feldman-Muthukrishnan-Sidiropoulos-Stein-Svitkina'07, Karloff-Suri-Vassilvitskii'10, Goodrich-Sitchinava-Zhang'11, ..., Beame, Koutris, Suciu'13]
 Pros:
 - Inspired by modern systems (Hadoop, MapReduce, Dryad, Spark, Giraph, ...)
 - Few parameters, simple to design algorithms
 - New algorithmic ideas, robust to the exact model specification
 - # Rounds is an information-theoretic measure => can prove unconditional results

Con: sometimes not enough to model more complex behavior

Business perspective

- Pricings:
 - https://cloud.google.com/pricing/
 - https://aws.amazon.com/pricing/
- ~Linear with space and time usage
 - 100 machines: 5K \$/year
 - 10000 machines: 0.5M \$/year
- You pay a lot more for using provided algorithms
 - https://aws.amazon.com/machine-learning/pricing/

Sorting: Terasort

- Sort Benchmark: http://sortbenchmark.org/
- Sorting n keys on $M = O(n^{1-\epsilon})$ machines
 - Would like to partition keys uniformly into blocks: first n/M, second n/M, etc.
 - Sort the keys locally on each machine
- Build an approximate histogram:
 - Each machine takes a sample of size s
 - All $M * s \leq S = n^{\epsilon}$ samples are sorted locally
 - Blocks are computed based on the samples
- By Chernoff: $\mathbf{M} * \mathbf{s} = O\left(\frac{\log n}{\sigma^2}\right)$ samples suffice to compute all block sizes up to $\pm \alpha n$ error with high probability
- Take $\alpha = \frac{n^{\epsilon 1}}{2}$: error O(S)• $\mathbf{M} * \mathbf{s} = \widetilde{O(n^{2 2\epsilon})} = \mathbf{O}(\mathbf{M}^2) \le \mathbf{O}(n^{\epsilon})$ for $\epsilon \ge 2/3$

Algorithms for Graphs

- Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size) Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

VS.

Part 1: Clustering Graphs

Applications:

- Community detection
- Fake account detection
- Deduplication
- Storage localization

— ...

Problem 1: Connectivity

- Input: n edges of a graph (arbitrarily partitioned between machines)
- Output: is the graph connected? (or # of connected components)
- Question: how many rounds does it take?

 - 1. O(1)2. $O(\log^{\alpha} n)$
- 3. $O(\mathbf{n}^{\alpha})$
 - 4. $O(2^{\alpha n})$
 - 5. Impossible

Algorithm for Connectivity

- Version of Boruvka's algorithm:
 - All vertices assigned to different components
 - Repeat $O(\log n)$ times:
 - Each component chooses a neighboring component
 - All pairs of chosen components get merged
- How to avoid chaining?

 If the graph of components is bipartite and only one side gets to choose then no chaining

Randomly assign components to the sides

Algorithm for Connectivity: Setup

Data: n edges of an undirected graph.

Notation:

- $\pi(v) \equiv \text{unique id of } v$
- $\Gamma(S) \equiv \text{set of neighbors of a subset of vertices S}$.

Labels:

- Algorithm assigns a label $\ell(v)$ to each v.
- $L_v \equiv$ the set of vertices with the label $\ell(v)$ (invariant: subset of the connected component containing v).

Active vertices:

• Some vertices will be called **active** (exactly one per L_{ν}).

Algorithm for Connectivity

- Mark every vertex as **active** and let $\ell(v) = \pi(v)$.
- For phases $i = 1, 2, ..., O(\log n)$ do:
 - Call each **active** vertex a **leader** with probability 1/2. If v is a **leader**, mark all vertices in L_v as **leaders**.
 - For every **active non-leader** vertex w, find the smallest **leader** (by π) vertex w* in $\Gamma(L_w)$.
 - Mark w passive, relabel each vertex with label w by w*.
- Output: set of connected components based on ℓ .

Algorithm for Connectivity: Analysis

- If $\ell(u) = \ell(v)$ then u and v are in the same CC.
- Claim: Unique labels with high probability after $O(\log N)$ phases.
- For every CC # active vertices reduces by a constant factor in every phase.
 - Half of the active vertices declared as non-leaders.
 - Fix an active non-leader vertex \boldsymbol{v} .
 - If at least two different labels in the CC of v then there is an edge (v', u) such that $\ell(v) = \ell(v')$ and $\ell(v') \neq \ell(u)$.
 - u marked as a leader with probability 1/2 ⇒ half of the active non-leader vertices will change their label.
 - Overall, expect 1/4 of labels to disappear.
 - After $O(\log N)$ phases # of active labels in every connected component will drop to one with high probability

Algorithm for Connectivity: Implementation Details

- Distributed data structure of size O(|V|) to maintain labels, ids, leader/non-leader status, etc.
 - O(1) rounds per stage to update the data structure
- Edges stored locally with all auxiliary info
 - Between stages: use distributed data structure to update local info on edges
- For every **active non-leader** vertex w, find the smallest **leader** (w.r.t π) vertex w* $\in \Gamma(L_w)$
 - Each (non-leader, leader) edge sends an update to the distributed data structure
- Much faster with Distributed Hash Table Service (DHT)
 [Kiveris, Lattanzi, Mirrokni, Rastogi, Vassilvitskii'14]

Algorithms for Graphs

- Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$
 - Linear sketching: one round, see [McGregor'14]
 - "Filtering" (Output fits on a single machine) [Karloff, Suri Vassilvitskii, SODA'10; Ene, Im, Moseley, KDD'11; Lattanzi, Moseley, Suri, Vassilvitskii, SPAA'11; Suri, Vassilvitskii, WWW'11]...
 - Sparse: $S \ll |V|$ (or $S \ll$ solution size) Sparse graph problems appear hard (**Big open question**: connectivity in $o(\log n)$ rounds?)

VS.

Problem 2: Correlation Clustering

Inspired by machine learning at WhizBang

- Practice: [Cohen, McCallum '01, Cohen, Richman '02]
- Theory: [Blum, Bansal, Chawla '04]

Correlation Clustering: Example

Minimize # of incorrectly classified pairs:

Covered non-edges + # Non-covered edges

- 4 incorrectly classified =
- 1 covered non-edge +
- 3 non-covered edges

Approximating Correlation Clustering

- Minimize # of incorrectly classified pairs
 - $-\approx 20000$ -approximation [Blum, Bansal, Chawla'04]
 - [Demaine, Emmanuel, Fiat, Immorlica'04], [Charikar, Guruswami, Wirth'05], [Ailon, Charikar, Newman'05]
 [Williamson, van Zuylen'07], [Ailon, Liberty'08],...
 - ≈ 2-approximation [Chawla, Makarychev, Schramm,Y. '15]
- Maximize # of correctly classified pairs
 - $-(1-\epsilon)$ -approximation [Blum, Bansal, Chawla'04]

Correlation Clustering

One of the most successful clustering methods:

- Only uses qualitative information about similarities
- # of clusters unspecified (selected to best fit data)
- Applications: document/image deduplication (data from crowds or black-box machine learning)
- NP-hard [Bansal, Blum, Chawla '04], admits simple approximation algorithms with good provable guarantees

Correlation Clustering

More:

- Survey [Wirth]
- KDD'14 tutorial: "Correlation Clustering: From Theory to Practice" [Bonchi, Garcia-Soriano, Liberty] http://francescobonchi.com/CCtuto kdd14.pdf
- Wikipedia article: <u>http://en.wikipedia.org/wiki/Correlation_clustering</u>

Data-Based Randomized Pivoting

3-approximation (expected) [Ailon, Charikar, Newman]

Algorithm:

- Pick a random pivot vertex $oldsymbol{v}$
- Make a cluster $v \cup N(v)$, where N(v) is the set of neighbors of v
- Remove the cluster from the graph and repeat

Data-Based Randomized Pivoting

- Pick a random pivot vertex p
- Make a cluster $p \cup N(p)$, where N(p) is the set of neighbors of p
- Remove the cluster from the graph and repeat

- 8 incorrectly classified =
- 2 covered non-edges +
- 6 non-covered edges

Parallel Pivot Algorithm

- $(3 + \epsilon)$ -approx. in $O(\log^2 n / \epsilon)$ rounds [Chierichetti, Dalvi, Kumar, KDD'14]
- Algorithm: while the graph is not empty
 - -D = current maximum degree
 - Activate each node independently with prob. ϵ/D
 - Deactivate nodes connected to other active nodes
 - The remaining nodes are pivots
 - Create cluster around each pivot as before
 - Remove the clusters

Parallel Pivot Algorithm: Analysis

- Fact: Halves max degree after $\frac{1}{\epsilon} \log n$ rounds
 - \Rightarrow terminates in $O\left(\frac{\log^2 n}{\epsilon}\right)$ rounds
- Fact: Activation process induces close to uniform marginal distribution of the pivots
 - \Rightarrow analysis similar to regular pivot gives (3 + ϵ)-approximation

Part 2: Clustering Vectors

- Input: $v_1, ..., v_n \in \mathbb{R}^d$
 - Feature vectors in ML, word embedings in NLP, etc.
 - (Implicit) weighted graph of pairwise distances
- Applications:
 - Same as before + Data visualization

Problem 3: K-means

- Input: $v_1, \dots, v_n \in \mathbb{R}^d$
- Find k centers c_1, \dots, c_k
- Minimize sum of squared distance to the closest center:

$$\sum_{i=1}^{n} \min_{j=1}^{k} ||v_i - c_j||_2^2$$

- $||v_i c_j||_2^2 = \sum_{t=1}^d (v_{it} c_{jt})^2$
- NP-hard

K-means++ [Arthur, Vassilvitskii'07]

- $C = \{c_1, ..., c_t\}$ (collection of centers)
- $d^2(v, C) = \min_{j=1}^k ||v c_j||_2^2$

K-means++ algorithm (gives $O(\log k)$ -approximation):

- Pick c_1 uniformly at random from the data
- Pick centers $c_2 \dots, c_k$ sequentially from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

K-means [Bahmani et al. '12]

- Pick $C = c_1$ uniformly at random from data
- Initial cost: $\psi = \sum_{i=1}^n d^2(v_i, c_1)$
- Do $O(\log \psi)$ times:
 - Add O(k) centers from the distribution where point v has probability

$$\frac{d^2(v,C)}{\sum_{i=1}^n d^2(v_i,C)}$$

- Solve k-means for these $O(k \log \psi)$ points locally
- Thm. If final step gives α -approximation $\Rightarrow O(\alpha)$ -approximation overall

Problem 4: Single Linkage Clustering

• [Zahn'71] Clustering via Minimum Spanning Tree:

k clusters: remove k-1 longest edges from MST

Maximizes minimum intercluster distance

[Kleinberg, Tardos]

Large geometric graphs

- Graph algorithms: Dense graphs vs. sparse graphs
 - Dense: $S \gg |V|$.
 - Sparse: $S \ll |V|$.

• Our setting:

- Dense graphs, sparsely represented: O(n) space
- Output doesn't fit on one machine ($S \ll n$)
- Today: $(1 + \epsilon)$ -approximate MST [Andoni, Onak, Nikolov, Y.]
 - d = 2 (easy to generalize)
 - $R = \log_S n = O(1) \text{ rounds } (S = n^{\Omega(1)})$

$O(\log n)$ -MST in $R = O(\log n)$ rounds

• Assume points have integer coordinates $[0, ..., \Delta]$, where $\Delta = O(n^2)$.

Impose an $O(\log n)$ -depth quadtree

Bottom-up: For each cell in the quadtree

- compute optimum MSTs in subcells
- Use only one representative from each cell on the next level

EL-nets

• ϵL -net for a cell C with side length L: Collection S of vertices in C, every vertex is at distance \leftarrow ϵL from some vertex in S. (Fact: Can efficiently compute ϵ -net of size $O\left(\frac{1}{\epsilon^2}\right)$)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level
- Idea: Pay only $O(\epsilon L)$ for an edge cut by cell with side L
- Randomly shift the quadtree:

 Pr[cut edge of length Whonk] presentation per level

 O(1)-approximation per level

Randomly shifted quadtree

• Top cell shifted by a random vector in $[0, L]^2$

Impose a randomly shifted quadtree (top cell length 2Δ)

Bottom-up: For each cell in the quadtree

- Compute optimum MSTs in subcells
- Use ϵL -net from each cell on the next level

Pay 5 instead of 4

Pr[Bad Cut] = $\Omega(1)$

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(\log n)$ rounds

Idea: Only use short edges inside the cells

Impose a **randomly shifted** quadtree (top cell length $\frac{2\Delta}{\epsilon}$)

Bottom-up: For each node (cell) in the quadtree

- compute optimum Minimum Spanning Forests in subcells, using edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$$L = \Omega(\frac{1}{\epsilon})$$

$$Pr[Bad Cut] = O(\epsilon)$$

$(1 + \epsilon)$ -MST in $\mathbf{R} = O(1)$ rounds

- $O(\log n)$ rounds => $O(\log_s n)$ = O(1) rounds
 - Flatten the tree: $(\sqrt{M} \times \sqrt{M})$ -grids instead of (2x2) grids at each level.

Impose a randomly shifted $(\sqrt{M} \times \sqrt{M})$ -tree

Bottom-up: For each node (cell) in the tree

- compute optimum MSTs in subcells via edges of length $\leq \epsilon L$
- Use only $\epsilon^2 L$ -net from each cell on the next level

$(1 + \epsilon)$ -MST in $\mathbf{R} = 0(1)$ rounds

Theorem: Let l = # levels in a random tree P $\mathbb{E}_{P}[\mathsf{ALG}] \leq \left(1 + O(\epsilon ld)\right)\mathsf{OPT}$

Proof (sketch):

- $\Delta_P(u, v)$ = cell length, which first partitions (u, v)
- New weights: $w_P(u,v) = ||u-v||_2 + \epsilon \Delta_P(u,v)$ $||u-v||_2 \le \mathbb{E}_P[w_P(u,v)] \le (1 + O(\epsilon d))||u-v||_2$
- Our algorithm implements Kruskal for weights w_P

Technical Details

$(1+\epsilon)$ -MST:

- "Load balancing": partition the tree into parts of the same size
- Almost linear time locally: Approximate Nearest
 Neighbor data structure [Indyk'99]
- Dependence on dimension **d** (size of ϵ -net is $O\left(\frac{d}{\epsilon}\right)^a$)
- Generalizes to bounded doubling dimension

Thanks! Questions?

- Slides will be available on http://grigory.us
- More about algorithms for massive data:

http://grigory.us/blog/

More in the classes I teach:

