Семинар по сложности булевых функций

Лекция 3: Линейные нижние оценки на схемную сложность и метод элиминации гейтов (продолжение)

А. Куликов

Computer Science клуб при ПОМИ http://compsciclub.ru

02.10.2011

- 🚺 Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3*п* для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

- Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3п для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

- Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3*п* для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

- Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3*n* для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

Нижняя оценка 2.5n для симметрических функций

Teopeмa (Stockmeyer, 77)

Для любых $m \geq 3$ и r, $C(MOD^n_{m,r}) \geq 2.5n-c$. Также $C(MOD^n_{4,r}) \leq 2.5n+O(1)$.

Нижняя оценка 2.5n для симметрических функций

Teopeмa (Stockmeyer, 77)

Для любых
$$m \geq 3$$
 и r , $C(MOD^n_{m,r}) \geq 2.5n-c$. Также $C(MOD^n_{4,r}) \leq 2.5n+O(1)$.

Идея доказательства

• В этом доказательстве уже довольно много случаев.

Нижняя оценка 2.5n для симметрических функций

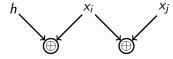
Teopeмa (Stockmeyer, 77)

Для любых
$$m \ge 3$$
 и r , $C(MOD^n_{m,r}) \ge 2.5n-c$. Также $C(MOD^n_{4,r}) \le 2.5n+O(1)$.

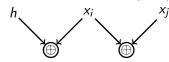
Идея доказательства

- В этом доказательстве уже довольно много случаев.
- Как обычно, сначала рассматриваются случаи, где довольно легко удалить три гейта одной подстановкой.

• Не удаётся это сделать в случае, когда в топ-гейт типа \oplus входят две переменные, степень каждой из которых равна 2.

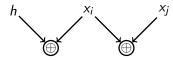


• Не удаётся это сделать в случае, когда в топ-гейт типа \oplus входят две переменные, степень каждой из которых равна 2.



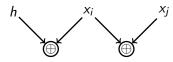
ullet Ключевой момент: сделаем подстановку $x_i=h,\, x_j=h\oplus 1.$

• Не удаётся это сделать в случае, когда в топ-гейт типа \oplus входят две переменные, степень каждой из которых равна 2.



- ullet Ключевой момент: сделаем подстановку $x_i=h,\, x_j=h\oplus 1.$
- Вообще говоря, не очень понятно, почему мы можем заменять x_i на функцию h. Позволяет нам это сделать тот факт, что h не зависит от x_i и что x_j мы заменяем на $h \oplus 1$. Такая замена эквивалентна тому, что $x_i + x_j = 1$, то есть мы просто убиваем зависимость симметрической функции от двух переменных.

• Не удаётся это сделать в случае, когда в топ-гейт типа \oplus входят две переменные, степень каждой из которых равна 2.



- ullet Ключевой момент: сделаем подстановку $x_i=h,\,x_j=h\oplus 1.$
- Вообще говоря, не очень понятно, почему мы можем заменять x_i на функцию h. Позволяет нам это сделать тот факт, что h не зависит от x_i и что x_j мы заменяем на $h \oplus 1$. Такая замена эквивалентна тому, что $x_i + x_j = 1$, то есть мы просто убиваем зависимость симметрической функции от двух переменных.
- Разбором случаев показывается, что при этом можно удалить пять гейтов.

- Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3*п* для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

Нижняя оценка 3*n*

Теорема (Blum, 84)

Пусть f_B : $\{0,1\}^{n+3\log n+3}$ определяется следующим образом: для $p,q,r\in\{0,1\}$, $a,b,c\in\{0,1\}^{\log n}$ и $x\in\{0,1\}^n$

$$f(a,b,c,p,q,r,x) = q(x_ax_b \vee px_{|b|}x_{|c|}^r) \vee \bar{q}(x_{|a|} \oplus x_{|b|}).$$

Тогда C(f) ≥ 3n - 3.

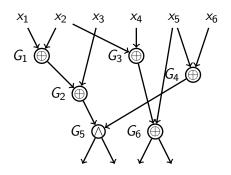
• Как и в случае функции индексации будем подставлять только переменные из x.

- Как и в случае функции индексации будем подставлять только переменные из *x*.
- Когда не удаётся подставить константу вместо переменной, попробуем подставить произвольную функцию вместо переменной.

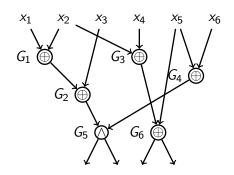
- Как и в случае функции индексации будем подставлять только переменные из x.
- Когда не удаётся подставить константу вместо переменной, попробуем подставить произвольную функцию вместо переменной.
- ullet Если ничего из этого не помогает, то каждая переменная из x входит ровно в один гейт, причём этот гейт типа \oplus и у него ровно один потомок.

- Как и в случае функции индексации будем подставлять только переменные из x.
- Когда не удаётся подставить константу вместо переменной, попробуем подставить произвольную функцию вместо переменной.
- Если ничего из этого не помогает, то каждая переменная из x входит ровно в один гейт, причём этот гейт типа \oplus и у него ровно один потомок.
- Покажем тогда, что в текущей схеме есть 3n-3 гейта. Поможет нам в этом тот факт, что для любых $1 \leq i < j \leq n$ можно так подставить почти все переменные, чтобы функция превратилась как в $x_i x_j$, так и в $x_i \oplus x_j$.

- Метод элиминации гейтов
- Примеры свойств функций, использующихся в доказательствах нижних оценок
 - 2.5 п для симметрических функций
 - 3*n* для обобщённой функции индексации
 - 3*n* для аффинных дисперсеров

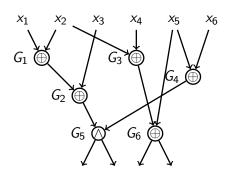


так выглядит стандартный уз-кий случай



так выглядит стандартный уз-кий случай

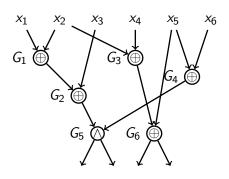
подставляя константу вместо переменной мы не можем удалить больше двух гейтов



так выглядит стандартный уз-кий случай

подставляя константу вместо переменной мы не можем удалить больше двух гейтов

и в то же время не можем исключить, что верх схемы выглядит так

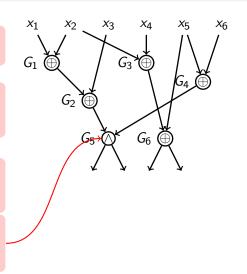


так выглядит стандартный уз-кий случай

подставляя константу вместо переменной мы не можем удалить больше двух гейтов

и в то же время не можем исключить, что верх схемы выглядит так

рассмотрим подстановку $x_1 \oplus x_2 \oplus x_3 = 0$: G_5 превращается в константу



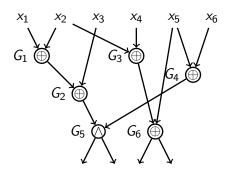
 Итак, линейные подстановки помогают при элиминации гейтов, но где взять функцию, которая выживает относительно таких подстановок?

- Итак, линейные подстановки помогают при элиминации гейтов, но где взять функцию, которая выживает относительно таких подстановок?
- Непросто построить функцию, которая не обращается в константу после любых n-o(n) линейных подстановок. Например, любая симметрическая функция становится константой после n/2 линейных подстановок: $x_1 \oplus x_2 = 1, x_3 \oplus x_4 = 1, \ldots$

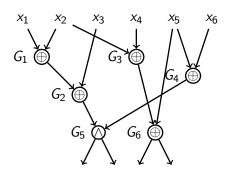
- Итак, линейные подстановки помогают при элиминации гейтов, но где взять функцию, которая выживает относительно таких подстановок?
- Непросто построить функцию, которая не обращается в константу после любых n-o(n) линейных подстановок. Например, любая симметрическая функция становится константой после n/2 линейных подстановок: $x_1 \oplus x_2 = 1, x_3 \oplus x_4 = 1, \ldots$
- Объект, который мы ищем, называется аффинным дисперсером.

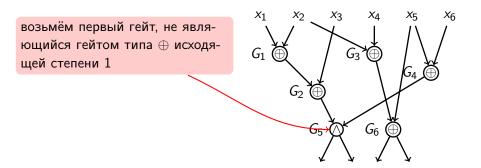
- Итак, линейные подстановки помогают при элиминации гейтов, но где взять функцию, которая выживает относительно таких подстановок?
- Непросто построить функцию, которая не обращается в константу после любых n-o(n) линейных подстановок. Например, любая симметрическая функция становится константой после n/2 линейных подстановок: $x_1 \oplus x_2 = 1, x_3 \oplus x_4 = 1, \ldots$
- Объект, который мы ищем, называется аффинным дисперсером.
- Формально, аффинный дисперсер для размерности d это функция $f: \{0,1\}^n \to \{0,1\}$, которая не константа ни на каком аффинном подпространстве пространства $\{0,1\}^n$ размерности хотя бы d.

- Итак, линейные подстановки помогают при элиминации гейтов, но где взять функцию, которая выживает относительно таких подстановок?
- Непросто построить функцию, которая не обращается в константу после любых n-o(n) линейных подстановок. Например, любая симметрическая функция становится константой после n/2 линейных подстановок: $x_1 \oplus x_2 = 1, x_3 \oplus x_4 = 1, \ldots$
- Объект, который мы ищем, называется аффинным дисперсером.
- Формально, аффинный дисперсер для размерности d это функция $f: \{0,1\}^n \to \{0,1\}$, которая не константа ни на каком аффинном подпространстве пространства $\{0,1\}^n$ размерности хотя бы d.
- Только недавно была представлена явная конструкция аффинных дисперсеров для d = o(n) [Ben-Sasson and Kopparty, 09].



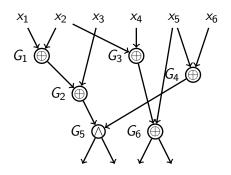
возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

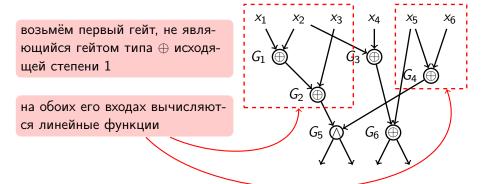




возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции



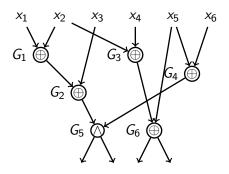


возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции

сделаем подстановку

 $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$



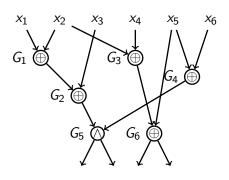
возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции

сделаем подстановку

 $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

это убивает рассматриваемый гейт и его потомков



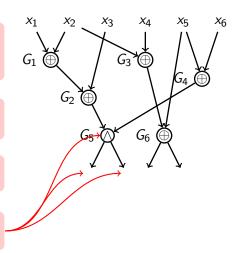
возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции

сделаем подстановку

 $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

это убивает рассматриваемый гейт и его потомков



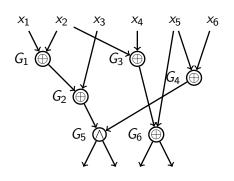
возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции

сделаем подстановку $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

это убивает рассматриваемый гейт и его потомков

более того, его предшественники больше не нужны тоже



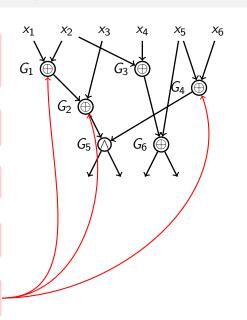
возьмём первый гейт, не являющийся гейтом типа \oplus исходящей степени 1

на обоих его входах вычисляются линейные функции

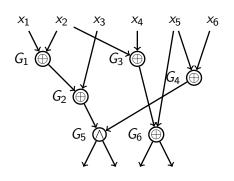
сделаем подстановку $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

это убивает рассматриваемый гейт и его потомков

более того, его предшественники больше не нужны тоже



небольшим разбором случае можно показать, что так всегда можно удалить 3 гейта; поскольку мы можем сделать n-o(n) таких подстановок, получаем нижнюю оценку 3n-o(n)



Открытая задача

Открытая задача

Доказать нижнюю оценку 3.1n на схемную сложность явно заданной булевой функции.

Спасибо за внимание!