
The Binary Blocking Flow Algorithm

Andrew V. Goldberg

Microsoft Research – Silicon Valley

www.research.microsoft.com/∼goldberg/

Theory vs. Practice

In theory, there is no difference between theory
and practice.

Binary Blocking Flows Andrew V. Goldberg 1

Problem Definition

• Input: Digraph G = (V, A), s, t ∈ V , u : A → [1, . . . , U].

• n = |V | and m = |A|.
• Similarity assumption [Gabow 85]: logU = O(logn)

For modern machines logU, logn ≤ 64.

• The Õ () bound ignores constants, logn, logU .

• Flow f : A → [0, . . . U] obeys capacity constraints and con-

servation constraints.

• Flow value |f | is the total flow into t.

• Cut is a partitioning V = S ∪ T : s ∈ S, t ∈ T .

• Cut capacity u(S, T) =
∑

v∈S,w∈T u(v, w).

Maximum flow problem: Find a maximum flow.

Minimum cut problem (dual): Find a minimum cut.

Binary Blocking Flows Andrew V. Goldberg 2

Applications of Flows

• Classical OR applications, e.g., open pit mining, logistics.

• Recent applications in computer vision, e.g., image segmen-

tation and stereo vision.

• Recent web applications like document classification.

• AI application.

Binary Blocking Flows Andrew V. Goldberg 3

AI Application

b i c ij

Bulls Cows

Artificial Insemination.

Binary Blocking Flows Andrew V. Goldberg 4

Outline

• History.

• The blocking flow method.

• The binary blocking flow algorithm.

• Open problem: making the algorithm practical.

• Open problem: extending the result to minimum-cost flows.

Binary Blocking Flows Andrew V. Goldberg 5

Time Bounds
year discoverer(s) bound note

1951 Dantzig O(n2mU) Õ
(

n2mU
)

1955 Ford & Fulkerson O(m2U) Õ
(

m2U
)

1970 Dinitz O(n2m) Õ
(

n2m
)

1972 Edmonds & Karp O(m2 logU) Õ
(

m2
)

1973 Dinitz O(nm logU) Õ (nm)
1974 Karzanov O(n3)

1977 Cherkassky O(n2m1/2)

1980 Galil & Naamad O(nm log2 n)
1983 Sleator & Tarjan O(nm logn)
1986 Goldberg & Tarjan O(nm log(n2/m))
1987 Ahuja & Orlin O(nm + n2 logU)

1987 Ahuja et al. O(nm log(n
√

logU/m))

1989 Cheriyan & Hagerup E(nm + n2 log2 n)
1990 Cheriyan et al. O(n3/ logn)

1990 Alon O(nm + n8/3 logn)

1992 King et al. O(nm + n2+ǫ)

1993 Phillips & Westbrook O(nm(logm/n n + log2+ǫ n))

1994 King et al. O(nm logm/(n logn) n)

1997 Goldberg & Rao O(m3/2 log(n2/m) logU) Õ
(

m3/2
)

O(n2/3m log(n2/m) logU) Õ
(

n2/3m
)

blocking flow and push-relabel algorithms.

Binary Blocking Flows Andrew V. Goldberg 6

Augmenting Path Algorithm

• Residual capacity uf(a) is u(a) − f(a) if a ∈ A and f(aR) if
a 6∈ A.

• Residual graph Gf = (V, Af) is induced by arcs with positive
residual capacity.

• Augmenting path is an s-t path in Gf .

f is optimal iff there is no augmenting path.
Flow augmentation: Given an augmenting path Γ, increase f

on all arcs on Γ by the minimum residual capacity of arcs on Γ.
Saturates at least one arc on Γ.

Augmenting path algorithm: While there is an augmenting
path, find one and augment.
Runs in O(m2U) time.

Unit lengths: ∀a ∈ Af let ℓ(a) = 1.
Augmenting along a shortest path yields a polynomial-time al-
gorithm.

Binary Blocking Flows Andrew V. Goldberg 7

Blocking Flows

f in G is blocking if every s-t path in G is saturated.

• The admissible graph G contains all arcs of Gf on s-t shortest

paths.

• G is acyclic.

• O(m log(n2/m)) algorithm to find a blocking flow in an acyclic

graph [Goldberg & Tarjan 90].

Blocking flow method:[Dinitz 70]

Repeatedly augment f by a blocking flow in Gf .

Binary Blocking Flows Andrew V. Goldberg 8

Blocking Flows: Analysis

Main lemma: Each iteration increases the s to t distance in Gf .

Proof: Let d be the shortest path distance function (to t).

Augmentation changes G.

• Saturated arcs deleted, distances do not decrease.

• For new arcs (v, w), d(v) < d(w), distances do not decrease.

• For the new G and old d, every s-t path contains an arc (v, w)

with d(v) ≤ d(w) by the definition of the blocking flow.

• The s-t distance increases.

Theorem: The blocking flow algorithm can be implemented to

run in O(nm log(n2/m)) time.

Binary Blocking Flows Andrew V. Goldberg 9

Decomposition Barrier

• A flow can be decomposed into O(m) paths of length O(n).

• The total length of augmenting paths can be Ω(nm).

• Without data structures, the blocking flow algorithm takes

Ω(nm) time.

• But data structures allow changing flow on many arcs in one

operation.

Can we beat the Ω(nm) barrier?

For unit capacities, the blocking flow algorithm runs in O(min(m1/2, n2/3)

time [Karzanov 73] [Even & Tarjan 74].

Binary Blocking Flows Andrew V. Goldberg 10

Unit Capacities

Theorem: For unit capacities, the blocking flow algorithm ter-

minates less than 2
√

m iterations.

Proof:

• After
√

m iterations, d(s) >
√

m.

• Consider cuts ({d(v) > i}, {d(v) ≤ i}).
• A residual arc crosses at most one such cut.

• One of the cuts’ residual capacity is below
√

m.

• Less than
√

m additional iterations.

A slightly different argument gives an O(n2/3) bound.

Binary Blocking Flows Andrew V. Goldberg 11

Binary Length Function

Algorithm intuition [Goldberg & Rao 1997]:

• Capacity-based lengths:

ℓ(a) = 1 if 0 < uf(a) < 2∆, ℓ(a) = 0 otherwise.

• Maintain residual flow bound F , update when improves by at

least a factor of 2.

• Set ∆ = F/
√

m.

• Find a flow of value ∆ or a blocking flow; augment.

• After O(
√

m) ∆-augmentations F decreases.

• After 4
√

m blocking flow augmentations, d(s) ≥ 2
√

m.

• One of the cuts ({d(v) > i}, {d(v) ≤ i}) has no 0-length arcs

and at most
√

m/4 length one arcs.

• After O(
√

m) blocking flows F decreases.

Why stop blocking flow computation at ∆ value?

Binary Blocking Flows Andrew V. Goldberg 12

Zero Length Arcs

Pros:

• Seem necessary for the result to work.

• Large arcs do not go from high to low vertex layers.

• Small cut when d(s) << n.

Cons:

• G need not be acyclic.

• Increasing flow in G may create new admissible arcs: d(v) =

d(w), increasing f(v, w) may increases uf(w, v) to 2∆.

• The new arcs are created only if an arc length is reduced to

zero.

These problems can be resolved.

Binary Blocking Flows Andrew V. Goldberg 13

Problem: Admissible Cycles

The admissible graph G is induced by arcs (v, w) ∈ Gf : d(v) =

d(w) + ℓ(v, w).

• G can have only cycles of zero-length arcs between vertices

with the same d.

• These arcs have capacities of at least 2∆.

• Contract SCCs of G to obtain acyclic G
′
.

• ∆ flow can be routed in such a strongly connected graph in

linear time [Erlebach & Hagerup 02, Haeupler & Tarjan 07].

• Stop a blocking flow computation if the current flow has

value ∆.

• After finding a flow in G
′
, extend it to a flow in G.

• A blocking flow in G
′
is a blocking flow in G.

Binary Blocking Flows Andrew V. Goldberg 14

Problem: Arc Length Decrease

2∆

∆

∆
0

1

1

2

∆

∆

∆

∆

∆

2∆
0

1

1

2 ∆

An arc length can decrease from one to zero and s-t distance

may not increase.

Binary Blocking Flows Andrew V. Goldberg 15

Special Arcs

When can length decrease on (v, w) happen and hurt?

1. ∆ ≤ uf(v, w) < 2∆

2. d(v) = d(w)
◦ d(v) > d(w): f(v, w)R not increases, ℓ(v, w) not decreases.

◦ d(v) < d(w): decreasing ℓ(v, w) does not hurt.

3. (optional) uf(v, w)R ≥ 2∆

Special arc: Satisfies (1), (2) and optionally (3).

Can reduce special arc length to zero: d does not change, residual

capacity large.

Binary Blocking Flows Andrew V. Goldberg 16

Main Loop

• Assign arc lengths, compute distances to t.

• Reduce special arc length to zero.

• Contract SCCs in G to obtain G
′
.

• Find a ∆-flow or a blocking flow in G
′
.

• Extend to a flow in G, augment.

2

∆

∆

∆

∆

∆

2∆
0

1

1

2

∆

∆

∆

∆

∆

2∆
0

1

1

Binary Blocking Flows Andrew V. Goldberg 17

Main Theorem

Theorem: While F stays the same, d is monotone. In the

blocking flow case, d(s) increases.

Proof: Similar to the regular blocking flow algorithm except for

special arcs.

Binary Blocking Flows Andrew V. Goldberg 18

Analysis

O(
√

m log(mU)) iteration bound is easy. To do better:

• While ∆ ≥ U no zero-length arcs, d(s) monotone.

• After O(
√

m) iterations F ≤ √
mU .

• O(
√

m) iterations reduces F by a factor of two.

• In O(
√

m logU) iterations F ≤ √
m.

• Integral flow, an iteration decreases F .

• O(
√

m logU) iterations total.

• An iteration is dominated by a blocking flow.

• A slight variation gives an O(n2/3 logU) iteration bound.

Theorem: The algorithm runs in O(min(m1/2, n2/3)m log(U) log(n2/m))

time.

Binary Blocking Flows Andrew V. Goldberg 19

Practicality

Non-unit lengths are a natural idea with a solid theoretical justi-

fication, but...

• [Hagerup et al 1998]: The binary blocking flow algorithm

implementation is more robust that the standard blocking

flow algorithm.

• So far, nobody was able to use length functions to get a

more robust implementation than good push-relabel imple-

mentations (we tried!).

• Theoretical obstacle – flow can move around cycles.

• Global re-computation of distances and contraction of the

SCCs is expensive.

Open problem: Are non-unit length functions practical?

Binary Blocking Flows Andrew V. Goldberg 20

Push–Relabel Method

Push–relabel algorithms [Goldberg & Tarjan 1986] are more prac-

tical than blocking flow algorithms. Uses unit lengths.

• Preflow f [Karzanov 1974]: v 6= s may have flow excess

ef(v), but not deficit.

• Distance labeling gives lower bounds on distance to t in Gf .

Formally d : V → N , d(t) = 0, ∀(v, w) ∈ Gf , d(v) ≤ d(w) + 1.

• Initially d(v) = 1 for v 6= s, t, d(s) = n, arcs out of s are

saturated.

• Apply push and relabel operations until none applies.

• Algorithm terminates with a min-cut. Converting preflow

into flow is fast.

• Admissible arc: (v, w) ∈ Af : d(v) > d(w).

Binary Blocking Flows Andrew V. Goldberg 21

Push–Relabel (cont.)

• Algorithm updates f and d using push and relabel operations.

• push(v, w): ef(v) > 0, (v, w) admissible.

Increase f(v, w) by at most min(uf(v, w), ef(v)).

• relabel(v): d(v) < n, no arc (v, w) is admissible.

Increase d(v) by 1 or the maximum possible value.

• Selection rules: Pick the next vertex to process, e.g., FIFO

on vertices with excess, highest-labeled vertex with excess.

The binary lengths function does not give improved bounds.

Binary Blocking Flows Andrew V. Goldberg 22

Augment–Relabel Algorithm

Intuitively, push-relabel with DFS operation ordering.

FindPath(v)

{

if (v == t) return(true);

while (there is an admissible arc (v,w)) {

if (FindPath(w) {

v->current = (v,w); return(true);

}

}

relabel(v); return(false);

}

The algorithm repeatedly calls FindPath(s) and augments along

the current arc path from s to t until d(s) ≥ n.

Can use binary lengths to get the improved bounds.

Does not work well in practice.

Binary Blocking Flows Andrew V. Goldberg 23

Min-Cost Flows

Problem definition: Additional cost per unit of flow c(a); find

maximum flow of minimum cost.

Min-cost flow algorithms:

• For unit lengths, max-flow + cost-scaling = min-cost flow

with log(nC) slowdown, where C is the maximum arc length.

• In particular, get an O(nm log(n2/m) log(nC)) algorithm.

• For unit capacities, [Gabow & Tarjan 87] give an

O(min(n2/3m1/2)m log(nC)) algorithm.

Open problem: For min-cost flows with integral data, is there

an O(min(n2/3m1/2)m log(nC) logU) algorithm?

...or a more modest Õ
(

n1−ǫm
)

algorithm for ǫ > 0?

Binary Blocking Flows Andrew V. Goldberg 24

Conclusions

• Bounds for unit and arbitrary integral capacity maximum

flows are close.

• Strongly polynomial bounds are still ω(nm).

• Non-unit length functions are natural and theoretically justi-

fied, but not practical yet.

• For minimum-cost flow, bounds for unit and arbitrary integral

capacities are far.

Binary Blocking Flows Andrew V. Goldberg 25

