The Binary Blocking Flow Algorithm

Andrew V. Goldberg Microsoft Research - Silicon Valley www.research.microsoft.com/~goldberg/

In theory, there is no difference between theory and practice.

— Problem Definition _____

- Input: Digraph G = (V, A), $s, t \in V$, $u : A \rightarrow [1, \dots, U]$.
- n = |V| and m = |A|.
- Similarity assumption [Gabow 85]: $\log U = O(\log n)$ For modern machines $\log U$, $\log n \le 64$.
- The $\tilde{O}()$ bound ignores constants, $\log n$, $\log U$.
- Flow $f : A \rightarrow [0, \dots U]$ obeys capacity constraints and conservation constraints.
- Flow value |f| is the total flow into t.
- Cut is a partitioning $V = S \cup T : s \in S, t \in T$.
- Cut capacity $u(S,T) = \sum_{v \in S, w \in T} u(v,w)$.

Maximum flow problem: Find a maximum flow. Minimum cut problem (dual): Find a minimum cut.

- Classical OR applications, e.g., open pit mining, logistics.
- Recent applications in computer vision, e.g., image segmentation and stereo vision.
- Recent web applications like document classification.
- AI application.

Artificial Insemination.

____ Outline _____

- History.
- The blocking flow method.
- The binary blocking flow algorithm.
- Open problem: making the algorithm practical.
- Open problem: extending the result to minimum-cost flows.

year	discoverer(s)	bound	note
1951	Dantzig	$O(n^2mU)$	$\left \tilde{O}\left(n^2 m U \right) \right $
1955	Ford & Fulkerson	$O(m^2U)$	$\tilde{O}(m^2U)$
1970	Dinitz	$O(n^2m)$	$\tilde{O}\left(n^2m\right)$
1972	Edmonds & Karp	$O(m^2 \log U)$	$\tilde{O}(m^2)$
1973	Dinitz	$O(nm \log U)$	$\tilde{O}(nm)$
1974	Karzanov	$O(n^3)$	
1977	Cherkassky	$O(n^2m^{1/2})$	
1980	Galil & Naamad	$O(nm\log^2 n)$	
1983	Sleator & Tarjan	$O(nm\log n)$	
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$	
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$	
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$	
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$	
1990	Cheriyan et al.	$O(n^3/\log n)$	
1990	Alon	$O(nm + n^{8/3} \log n)$	
1992	King et al.	$O(nm + n^{2+\epsilon})$	
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$	
1994	King et al.	$O(nm \log_{m/(n \log n)} n)$	
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$	$ ilde{O}\left(m^{3/2} ight)$
		$O(n^{2/3}m\log(n^2/m)\log U)$	$\tilde{O}\left(n^{2/3}m\right)$

blocking flow and push-relabel algorithms.

— Augmenting Path Algorithm .

- Residual capacity $u_f(a)$ is u(a) f(a) if $a \in A$ and $f(a^R)$ if $a \notin A$.
- Residual graph $G_f = (V, A_f)$ is induced by arcs with positive residual capacity.
- Augmenting path is an s-t path in G_f .
- f is optimal iff there is no augmenting path.

Flow augmentation: Given an augmenting path Γ , increase f on all arcs on Γ by the minimum residual capacity of arcs on Γ . Saturates at least one arc on Γ .

Augmenting path algorithm: While there is an augmenting path, find one and augment. Runs in $O(m^2U)$ time.

Unit lengths: $\forall a \in A_f$ let $\ell(a) = 1$. Augmenting along a shortest path yields a polynomial-time algorithm.

f in G is blocking if every s-t path in G is saturated.

- The admissible graph \overline{G} contains all arcs of G_f on s-t shortest paths.
- \overline{G} is acyclic.
- $O(m \log(n^2/m))$ algorithm to find a blocking flow in an acyclic graph [Goldberg & Tarjan 90].

Blocking flow method:[Dinitz 70]

Repeatedly augment f by a blocking flow in G_f .

Main lemma: Each iteration increases the *s* to *t* distance in G_f . **Proof:** Let *d* be the shortest path distance function (to *t*). Augmentation changes \overline{G} .

- Saturated arcs deleted, distances do not decrease.
- For new arcs (v, w), d(v) < d(w), distances do not decrease.
- For the new \overline{G} and old d, every s-t path contains an arc (v, w) with $d(v) \leq d(w)$ by the definition of the blocking flow.
- The *s*-*t* distance increases.

Theorem: The blocking flow algorithm can be implemented to run in $O(nm \log(n^2/m))$ time.

Decomposition Barrier _____

- A flow can be decomposed into O(m) paths of length O(n).
- The total length of augmenting paths can be $\Omega(nm)$.
- Without data structures, the blocking flow algorithm takes $\Omega(nm)$ time.
- But data structures allow changing flow on many arcs in one operation.

Can we beat the $\Omega(nm)$ barrier?

For unit capacities, the blocking flow algorithm runs in $O(\min(m^{1/2}, n^{2/3}))$ time [Karzanov 73] [Even & Tarjan 74]. **Theorem:** For unit capacities, the blocking flow algorithm terminates less than $2\sqrt{m}$ iterations.

Proof:

- After \sqrt{m} iterations, $d(s) > \sqrt{m}$.
- Consider cuts $(\{d(v) > i\}, \{d(v) \le i\}).$
- A residual arc crosses at most one such cut.
- One of the cuts' residual capacity is below \sqrt{m} .
- Less than \sqrt{m} additional iterations.

A slightly different argument gives an $O(n^{2/3})$ bound.

Binary Length Function _____

Algorithm intuition [Goldberg & Rao 1997]:

- Capacity-based lengths: $\ell(a) = 1$ if $0 < u_f(a) < 2\Delta$, $\ell(a) = 0$ otherwise.
- Maintain residual flow bound F, update when improves by at least a factor of 2.
- Set $\Delta = F/\sqrt{m}$.
- Find a flow of value Δ or a blocking flow; augment.
- After $O(\sqrt{m})$ Δ -augmentations F decreases.
- After $4\sqrt{m}$ blocking flow augmentations, $d(s) \ge 2\sqrt{m}$.
- One of the cuts $(\{d(v) > i\}, \{d(v) \le i\})$ has no 0-length arcs and at most $\sqrt{m}/4$ length one arcs.
- After $O(\sqrt{m})$ blocking flows F decreases.

Why stop blocking flow computation at Δ value?

Pros:

- Seem necessary for the result to work.
- Large arcs do not go from high to low vertex layers.
- Small cut when $d(s) \ll n$.

Cons:

- \overline{G} need not be acyclic.
- Increasing flow in \overline{G} may create new admissible arcs: d(v) = d(w), increasing f(v, w) may increases $u_f(w, v)$ to 2Δ .
- The new arcs are created only if an arc length is reduced to zero.

These problems can be resolved.

The admissible graph \overline{G} is induced by arcs $(v, w) \in G_f$: $d(v) = d(w) + \ell(v, w)$.

- \overline{G} can have only cycles of zero-length arcs between vertices with the same d.
- These arcs have capacities of at least 2Δ .
- Contract SCCs of \overline{G} to obtain acyclic \overline{G}' .
- Δ flow can be routed in such a strongly connected graph in linear time [Erlebach & Hagerup 02, Haeupler & Tarjan 07].
- Stop a blocking flow computation if the current flow has value $\Delta.$
- After finding a flow in \overline{G}' , extend it to a flow in \overline{G} .
- A blocking flow in \overline{G}' is a blocking flow in \overline{G} .

An arc length can decrease from one to zero and s-t distance may not increase.

____ Special Arcs _____

When can length decrease on (v, w) happen and hurt?

- 1. $\Delta \leq u_f(v,w) < 2\Delta$
- 2. d(v) = d(w) $\circ d(v) > d(w)$: $f(v, w)^R$ not increases, $\ell(v, w)$ not decreases. $\circ d(v) < d(w)$: decreasing $\ell(v, w)$ does not hurt. 3. (optional) $u_f(v, w)^R \ge 2\Delta$

Special arc: Satisfies (1), (2) and optionally (3).

Can reduce special arc length to zero: d does not change, residual capacity large.

Main Loop _____

- Assign arc lengths, compute distances to t.
- Reduce special arc length to zero.
- Contract SCCs in \overline{G} to obtain \overline{G}' .
- Find a Δ -flow or a blocking flow in \overline{G}' .
- Extend to a flow in \overline{G} , augment.

Theorem: While F stays the same, d is monotone. In the blocking flow case, d(s) increases.

Proof: Similar to the regular blocking flow algorithm except for special arcs.

____ Analysis ____

 $O(\sqrt{m}\log(mU))$ iteration bound is easy. To do better:

- While $\Delta \geq U$ no zero-length arcs, d(s) monotone.
- After $O(\sqrt{m})$ iterations $F \leq \sqrt{m}U$.
- $O(\sqrt{m})$ iterations reduces F by a factor of two.
- In $O(\sqrt{m} \log U)$ iterations $F \leq \sqrt{m}$.
- Integral flow, an iteration decreases F.
- $O(\sqrt{m} \log U)$ iterations total.
- An iteration is dominated by a blocking flow.
- A slight variation gives an $O(n^{2/3} \log U)$ iteration bound.

Theorem: The algorithm runs in $O(\min(m^{1/2}, n^{2/3})m \log(U) \log(n^2/m))$ time.

Practicality _____

Non-unit lengths are a natural idea with a solid theoretical justification, but...

- [Hagerup et al 1998]: The binary blocking flow algorithm implementation is more robust that the standard blocking flow algorithm.
- So far, nobody was able to use length functions to get a more robust implementation than good push-relabel implementations (we tried!).
- Theoretical obstacle flow can move around cycles.
- Global re-computation of distances and contraction of the SCCs is expensive.

Open problem: Are non-unit length functions practical?

Push–relabel algorithms [Goldberg & Tarjan 1986] are more practical than blocking flow algorithms. Uses unit lengths.

- Preflow f [Karzanov 1974]: $v \neq s$ may have flow excess $e_f(v)$, but not deficit.
- Distance labeling gives lower bounds on distance to t in G_f . Formally $d: V \to \mathcal{N}, d(t) = 0, \forall (v, w) \in G_f, d(v) \leq d(w) + 1$.
- Initially d(v) = 1 for $v \neq s, t, d(s) = n$, arcs out of s are saturated.
- Apply push and relabel operations until none applies.
- Algorithm terminates with a min-cut. Converting preflow into flow is fast.
- Admissible arc: $(v, w) \in A_f : d(v) > d(w)$.

Push–Relabel (cont.)

- Algorithm updates f and d using push and relabel operations.
- push(v,w): $e_f(v) > 0$, (v,w) admissible. Increase f(v,w) by at most $min(u_f(v,w), e_f(v))$.
- relabel(v): d(v) < n, no arc (v, w) is admissible. Increase d(v) by 1 or the maximum possible value.
- Selection rules: Pick the next vertex to process, e.g., FIFO on vertices with excess, highest-labeled vertex with excess.

The binary lengths function does not give improved bounds.

Augment–Relabel Algorithm ____

Intuitively, push-relabel with DFS operation ordering.

```
FindPath(v)
{
    if (v == t) return(true);
    while (there is an admissible arc (v,w)) {
        if (FindPath(w) {
            v->current = (v,w); return(true);
        }
    }
    relabel(v); return(false);
}
```

The algorithm repeatedly calls FindPath(s) and augments along the current arc path from s to t until $d(s) \ge n$. Can use binary lengths to get the improved bounds. Does not work well in practice. Min-Cost Flows

Problem definition: Additional cost per unit of flow c(a); find maximum flow of minimum cost.

Min-cost flow algorithms:

- For unit lengths, max-flow + cost-scaling = min-cost flow with log(nC) slowdown, where C is the maximum arc length.
- In particular, get an $O(nm \log(n^2/m) \log(nC))$ algorithm.
- For unit capacities, [Gabow & Tarjan 87] give an $O(\min(n^{2/3}m^{1/2})m\log(nC))$ algorithm.

Open problem: For min-cost flows with integral data, is there an $O(\min(n^{2/3}m^{1/2})m\log(nC)\log U)$ algorithm? ...or a more modest $\tilde{O}(n^{1-\epsilon}m)$ algorithm for $\epsilon > 0$?

- Bounds for unit and arbitrary integral capacity maximum flows are close.
- Strongly polynomial bounds are still $\omega(nm)$.
- Non-unit length functions are natural and theoretically justified, but not practical yet.
- For minimum-cost flow, bounds for unit and arbitrary integral capacities are far.