We consider several basic notions of combinatorics on words, either directly related to applied algorithmic problems, or of theoretical interest.
Is there a word on a finite alphabet which does not contain two consecutive equal subwords? How can we estimate the number of words of a given length avoiding factors of a given form? How many factors of a given length can a word have? And what about words appearing in its arithmetic progressions? What theory arises from words coding discretized straight lines?
Date and time | Class|Name | Venue|short | Materials |
---|---|---|---|
15 October 17:20–18:55 |
Теория избегаемости, Lecture | ПОМИ РАН | slides, video |
15 October 19:05–20:40 |
Автоматные слова, Lecture | ПОМИ РАН | slides, video |
16 October 11:15–12:50 |
Слова Штурма, Lecture | ПОМИ РАН | slides, video |
16 October 13:00–14:35 |
Слова Штурма (продолжение). Вращательные слова., Lecture | ПОМИ РАН | slides, video |
16 October 15:35–17:10 |
Комбинаторные определения сложности бесконечных слов, Lecture | ПОМИ РАН | slides, video |