
Advanced Approximation Algorithms (CMU 18-854B, Spring 2008)

Lecture 14: Semidefinite Programming and Max-Cut

Feb 28, 2008

Lecturer: Ryan O’Donnell Scribe: Ali Kemal Sinop

1 Maximum Cut

In the Maximum Cut problem, we are given a weighted graph G = (V, E, W). The goal is to find

a partitioning (S, S̄), S ⊂ V of the graph so as to maximize the total weight of edges in the cut.

Formally the problem is to find f : V → {0, 1} which maximizes
∑

ij∈E:f(i)6=f(j) wij .

In homework #1, we already saw a greedy 1/2-approximation algorithm for this problem. Now

let’s examine a potential LP formulation.

Variables: dij =

{

1, if edge ij is in cut

0, otherwise

0 ≤ dij ≤ 1
max

∑

ij wijdij

However, the above LP is not enough by itself. What constraints can be added to this formu-

lation? One observation is that on any triangle, the number of edges in the cut can be at most 2.

Another observation is that d’s form a metric on the graph, so they obey triangle inequality. Hence

we have:

Constraints: dij + djk + dki ≤ 2,
dij + djk ≥ dik.

The integrality gap of this LP is still 1/2 [7]. In fact ∀ε > 0, for random graphs Gn, log n
n

,

LP(G) ≥ 1 − ε but OPT(G) ≤ 1
2

+ ε. Moreover even if we were to add some local constraints,

these results still hold.

Since LP relaxations can’t get any better than greedy algorithm, we need to look for some

other solution. First let’s change the indicator function on variables to f : V → {−1, +1}. Then

f(i) 6= f(j) ⇐⇒ f(i)f(j) = −1. Using this observation, we can write an Integer-Quadratic

Programming (IQP) formulation:

maximize
∑

ij∈E wij

(

1−vivj

2

)

subject to v2
i = 1,

vi ∈ R.

Notice that this is exactly max-cut problem, so solving this is NP-hard still. In order to obtain

a relaxation, we will allow the variables v to be in a higher dimension space. So we change the

1

constraint vi ∈ R with vi ∈ R
n. Then vivj becomes vi · vj (· denotes the dot product) and v2

i = 1
becomes ‖vi‖2 = vi · vi = 1.

This problem seems very complicated, but it can actually be solved1 in polynomial time. The

reason is that it is actually an LP in disguise. To see this, first let ρij denote the dot product vi · vj .

The problem is now:

maximize
∑

ij∈E wij

(

1−ρij

2

)

subject to ρii = 1

This formulation is currently unbounded. The constraint we are missing now is the geometric

constraints saying ∃v1, v2, . . . , vn ∈ R
n such that ρij = vi · vj . (Without loss of generality, we can

assume that all vectors lie in dimension n, because only dot products matter.) Although it is not

immediately obvious, these constraints turn out to be an infinite collection of linear constraints on

the ρij’s.

Let P = (ρij)ij be the n×n matrix of inner products (Gram matrix). There are three properties

of this matrix:

1. P is symmetric, because ρij = vi · vj = vj · vi = ρji. This implies that all eigenvalues of P
are real.

2. All diagonals of P are 1’s, because ρii = ‖vi‖2 = 1.

3. Let V = [v1 v2 . . . vn] be the matrix formed by stacking the vectors v. Then we have

V T V =







vT
1
...

vT
n






[v1 v2 . . . vn] =







v1 · v1 v1 · v2 . . . v1 · vn
...

...
. . .

...

vn · v1 vn · v2 . . . vn · vn






= P

Hence there exists a matrix V such that V T V = P .

This implies a non-trivial fact about matrix P . Consider any x ∈ R
n. Then

xT Px = xT V T V x = (V x)T (V x) = ‖V x‖2 ≥ 0

Hence ∀x ∈ R
n, xT Rx ≥ 0. From now on, such matrices will be called positive semidefinite

(PSD) matrices.

1essentially

2

Theorem 1.1. Let P be a symmetric n-by-n matrix. The following are equivalent:

1. There exists an m-by-n matrix V such that V T V = P .

2. For all x ∈ R
n, xT Px ≥ 0.

3. All eigenvalues of P are non-negative.

So we can write the missing geometric constraint as:

xT Rx ≥ 0 =⇒
∑

ij xixjρij ≥ 0, ∀x ∈ R
n (1)

Note that these are linear constraints on the ρij’s (albeit infinitely many). However using the

Ellipsoid Algorithm, we can still solve this problem in polynomial time as long as we have. . .

Separation Oracle: Given P = (ρij), assume it is symmetric (we can easily check this).

We know that if P is PSD, then all its eigenvalues are non-negative. Therefore we can compute

all eigenvalues of P in polynomial time within a desired accuracy ε [5]. If all of them are non-

negative, then we are done. Otherwise the eigenvector associated with the negative eigenvalue is

the desired vector x violating (1).

After having computer P , we can obtain V by running Cholesky decomposition on P .

1.1 Formal Semidefinite Programming (SDP)

Any LP over n2 variables arranged to a matrix X with the additional constraint that X � 0 (X is

PSD) is called a semidefinite program (SDP).

Before going on further, there are some technical issues associated with SDPs. We need the an-

swer, constraints and the solution to be written down with poly(n) bits, however no such guarantee

exists for the solution of SDPs. First, the solution of SDP might be irrational.

Another problem is that the solution might be doubly-exponential. This is not a problem most

of the time; for the case of MAX-CUT SDP, since ‖vi‖ ≤ 1, this can’t occur.

The truth of the matter is that the Ellipsoid Algorithm will give an answer within an additive ε
of OPT with running time overhead poly log ε−1. Henceforth we will not worry about these kinds

of issues.

Currently, SDPs with 1000’s of variables are solvable. The state of the art method for solving

SDPs is interior point methods with running time Õ(n3.5 log ε−1) [2].

For MAX-CUT SDP, there are combinatorial algorithms utilizing Primal-Dual methods in time

Õ(mn
ε3

) for general graphs [6] and in time Õ(m
εO(1)) for regular graphs [1]. But dependence of these

methods on ε is very bad, so interior point methods do better in practice.

3

1.2 Randomized Rounding

Assume we solved the SDP formulation for MAX-CUT and got P and V . So SDP suggests a way

of separating nodes i and j such that if ρij = vi · vj is close to −1, then we should cut it, otherwise

there is no need to bother. The Goemans-Williamson randomized rounding technique [4] is to

choose a uniformly random hyperplane through the origin and use it to cut vectors/vertices into

two parts.

To draw a random hyperplane, we can also pick the normal to the hyperplane to be a random

vector r from the surface of unit sphere. Then

f(i) = sgn(r · vi)

In order to pick a random unit vector, we can pick n random Gaussian variables, r1, . . . , rn and

let r = (r1,r2,...,rn)√
r2
1+r2

2+...r2
n

.

Fact: A collection of n random Gaussian variables is a spherically symmetric distribution. The

probability density function is

n
∏

i=1

1√
2π

e−x2
i /2 =

1

(2π)n/2
e−‖x‖2/2.

Hence after normalization, r will be a uniformly random vector over the unit sphere.

The expected value of this cut is

E[value of cut] = E[
∑

ij

wij1[(i,j) cut]] =
∑

ij

wijPr[(i,j) cut]

By spherical symmetry, we can rotate points vi and vj so that they both lie in the 2-d plane:

4

Here the random hyperplane will be equivalent to picking a random diameter of this circle.

Then the probability of cutting this edge is equal to the angle between vi and vj over π:

Pr[(i,j) cut] =
∠(~vi, ~vj)

π
=

arccos(~vi · ~vj)

π

Hence the expected value of this randomized rounding procedure is AlgGW (G) =
∑

ij wij
arccos(~vi· ~vj)

π
,

which we want to compare against SDP(G) =
∑

ij wij(
1
2
− 1

2
~vi · ~vj) ≥ OPT(G).

The plot of functions (arccos ρ)/π and 1
2
− 1

2
ρ is given below:

In this plot, V is the place where randomized rounding algorithm is doing better. The dotted

lines shown the points on which the gap is maximum.

We know that the gap is smaller than αGW := min−1≤ρ≤1
arccos ρ/π
1/2−1/2ρ

≈ 0.87854. Hence at every

edge, the randomized rounding algorithm will achieve at least a factor of 0.878. Therefore:

Theorem 1.2.
Alg

GW
(G)

SDP(G)
≥ αGW ≈ 0.878.

Consequently Goemans-Williamson algorithm [4] is a factor .878 approximation.

5

References

[1] S. Arora and S. Kale. A combinatorial, primal-dual approach to semidefinite programs. In

STOC, pages 227–236, 2007.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[3] U. Feige, M. Karpinski, and M. Langberg. Improved approximation of MAX-CUT on graphs

of bounded degree. Electronic Colloquium on Computational Complexity (ECCC), (021),

2000.

[4] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for max cut and max

2sat. In STOC, pages 422–431, 1994.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 3

edition, 1996.

[6] P. Klein and H.-I. Lu. Efficient approximation algorithms for semidefinite programs arising

from max cut and coloring. In STOC, pages 338–347, 1996.

[7] S. Poljak and Z. Tuza. On the expected relative error of the polyhedral approximation of the

max-cut. Operational Research Letters, 16:191–198, 1994.

6

